11.定義在R上的奇函數(shù)f(x)滿足f(x)=f(x-4),且在[0,2)上單調(diào)遞增,則下列結(jié)論中正確的是(  )
A.0<f(-1)<f(5)B.f(-1)<f(5)<0C.f(5)<f(-1)<0D.f(-1)<0<f(5)

分析 由題意可得f(x)是周期為4的周期函數(shù),故有f(5)=f(1),f(x)在一個(gè)周期(-2,2)上單調(diào)遞增,且f(0)=0,從而得出結(jié)論.

解答 解:定義在R上的奇函數(shù)f(x)滿足f(x)=f(x-4),
則f(x)是周期為4的周期函數(shù),
故有f(5)=f(1).
由于f(x)在[0,2)上單調(diào)遞增,故它在(-2,0]上單調(diào)遞增,
故有f(x)在一個(gè)周期(-2,2)上單調(diào)遞增,且f(0)=0,
故有f(-1)<0<f(5)=f(1),
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性、周期性和奇偶性的綜合應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{2}$x2-mx+1(m∈R).
(1)設(shè)函數(shù)f(x)=2m2f(x)-g(x),求函數(shù)F(x)的單調(diào)區(qū)間;
(2)對(duì)于任意實(shí)數(shù)x1,x2∈[1,2],且x1≠x2,都有f(x1)-f(x2)>g(x2)-g(x1)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知sinx+cosx=$\frac{1}{5}$,(-$\frac{π}{2}$<x<0),求$\frac{3si{n}^{2}\frac{x}{2}-2cos\frac{x}{2}sin\frac{x}{2}+co{s}^{2}\frac{x}{2}}{sinx-cosx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:
①?gòu)?5件產(chǎn)品中抽取3件進(jìn)行檢查;
②某公司共有160名員工,其中管理人員16名,技術(shù)人員120名,后勤人員24名,為了了解員工對(duì)公司的意見,擬抽取一個(gè)容量為20的樣本;
③電影院有28排,每排有32個(gè)座位,某天放映電影《英雄》時(shí)恰好坐滿了觀眾,電影放完后,為了聽取意見,需要請(qǐng)28名觀眾進(jìn)行座談.
較為合理的抽樣方法是(  )
A.①簡(jiǎn)單隨機(jī)抽樣,②系統(tǒng)抽樣,③分層抽樣
B.①分層抽樣,②系統(tǒng)抽樣,③簡(jiǎn)單隨機(jī)抽樣
C.①系統(tǒng)抽樣,②簡(jiǎn)單隨機(jī)抽樣,③分層抽樣
D.①簡(jiǎn)單隨機(jī)抽樣,②分層抽樣,③系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知A(2,4),B(5,3),則$\overrightarrow{AB}$=(3,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.cos330°等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知點(diǎn)A(1,1),B(-1,5),向量$\overrightarrow{AC}$=2$\overrightarrow{AB}$,則點(diǎn)C的坐標(biāo)為(-3,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.方程ax+by+c=0表示傾斜角為銳角的直線,則必有(  )
A.ab>1B.ab<0C.a>0或b<0D.a>0且b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在1,3,5,7,9中任取2個(gè)不同的數(shù),則這2個(gè)數(shù)的和大于9的概率為$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案