【題目】為了引導(dǎo)居民合理用電,國(guó)家決定實(shí)行合理的階梯電價(jià),居民用電原則上以住宅為單位(一套住宅為一戶).
某市隨機(jī)抽取10戶同一個(gè)月的用電情況,得到統(tǒng)計(jì)表如下:
(1)若規(guī)定第一階梯電價(jià)每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯每度0.8元,試計(jì)算居民用電戶用電410度時(shí)應(yīng)交電費(fèi)多少元?
(2)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;
(3)以表中抽到的10戶作為樣本估計(jì)全市居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.
【答案】(1)元;(2)分布列見(jiàn)解析,期望為;(3).
【解析】
(1)將分成三個(gè)部分:元收費(fèi)的是度,元收費(fèi)的是度,元收費(fèi)的是度,相加后求得總的費(fèi)用.(2)由表格數(shù)據(jù)可知,第二梯度電量用戶有戶,另外戶不是,利用超幾何分布計(jì)算公式,計(jì)算出分布列,并求得期望值.(3)由表格數(shù)據(jù)可知,第一梯度有戶,故概率為.從全市中依次抽取戶,相當(dāng)于十次獨(dú)立重復(fù)試驗(yàn),屬于二項(xiàng)分布.利用二項(xiàng)分布的概率計(jì)算公式,列不等式組,解不等式組求得的取值范圍.
(1)元
(2)設(shè)取到第二階梯電量的用戶數(shù)為,可知第二階梯電量的用戶有3戶,則可取0,1,2,3,,,,
故的分布列為
∴
(3)可知從全市中抽取10戶的用電量為第一階梯,滿足,
可知()
令
解得:,
∴當(dāng)時(shí)概率最大,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面四邊形MNPQ中,MN=,MP=1,MP⊥MN,PQ⊥QM.
(Ⅰ)若PQ=,求NQ的值;
(Ⅱ)若∠MQN=30°,求sin∠QMP的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,、分別為橢圓的焦點(diǎn),橢圓的右準(zhǔn)線與軸交于點(diǎn),若,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)、作互相垂直的兩直線分別與橢圓交于、、、四點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以點(diǎn)P為圓心的圓經(jīng)過(guò)點(diǎn)A(-1,0)和B(3,4),線段AB的垂直平分線交圓P于點(diǎn)C和D,且|CD|=.
(1)求直線CD的方程;
(2)求圓P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;
(3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,證明:;
(3)若,直線與曲線相切,證明:.
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定一個(gè)由個(gè)小正方形拼成的棋盤(pán)形方格,這些小正方形的顏色黑白相間(如圖).
現(xiàn)定義一種運(yùn)算A:把位于第i行的所有小正方形和位于第j列的所有小正方形都換成相反的顏色,即黑色的小正方形換成白色的,白色的小正方形換成黑色的,這里.我們把A稱(chēng)為在位于第i行第j列上的小正方形上的一次運(yùn)算.試問(wèn):能否經(jīng)過(guò)若干次上述運(yùn)算把棋盤(pán)上的所有小正方形全部換成同一種顏色?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校研究性學(xué)習(xí)小組從汽車(chē)市場(chǎng)上隨機(jī)抽取輛純電動(dòng)汽車(chē)調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車(chē)的續(xù)駛里程全部介于公里和公里之間,將統(tǒng)計(jì)結(jié)果分成組:,,,,,繪制成如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)求輛純電動(dòng)汽車(chē)?yán)m(xù)駛里程的中位數(shù);
(3)若從續(xù)駛里程在的車(chē)輛中隨機(jī)抽取輛車(chē),求其中恰有一輛車(chē)的續(xù)駛里程為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,且軸,的周長(zhǎng)為6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得恒成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com