【題目】某校研究性學(xué)習(xí)小組從汽車(chē)市場(chǎng)上隨機(jī)抽取輛純電動(dòng)汽車(chē)調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車(chē)的續(xù)駛里程全部介于公里和公里之間,將統(tǒng)計(jì)結(jié)果分成組:,,,,,繪制成如圖所示的頻率分布直方圖.

1)求直方圖中的值;

2)求輛純電動(dòng)汽車(chē)?yán)m(xù)駛里程的中位數(shù);

3)若從續(xù)駛里程在的車(chē)輛中隨機(jī)抽取輛車(chē),求其中恰有一輛車(chē)的續(xù)駛里程為的概率.

【答案】123

【解析】

1)利用小矩形的面積和為,求得,即可求得答案;

2)中位數(shù)的計(jì)算方法為:把頻率分布直方圖分成兩個(gè)面積相等部分的平行于軸的直線(xiàn)橫坐標(biāo),即可求得答案;

3)據(jù)直方圖求出續(xù)駛里程在和續(xù)駛里程在的車(chē)輛數(shù),利用排列組合和概率公式求出其中恰有一輛車(chē)的續(xù)駛里程在的概率,即可求得答案.

1)由直方圖可得:

2)根據(jù)中位數(shù)的計(jì)算方法為:把頻率分布直方圖分成兩個(gè)面積相等部分的平行于軸的直線(xiàn)橫坐標(biāo).

直方圖可得:

可得:

輛純電動(dòng)汽車(chē)?yán)m(xù)駛里程的中位數(shù).

3 續(xù)駛里程在的車(chē)輛數(shù)為:

續(xù)駛里程在第五組的車(chē)輛數(shù)為.

輛車(chē)中隨機(jī)抽取輛車(chē),共有中抽法,

其中恰有一輛車(chē)的續(xù)駛里程在的抽法有種,

其中恰有一輛車(chē)的續(xù)駛里程在的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知若過(guò)軸上的一點(diǎn)可以作一直線(xiàn)與相交于,兩點(diǎn)且滿(mǎn)足,的取值范圍為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了引導(dǎo)居民合理用電,國(guó)家決定實(shí)行合理的階梯電價(jià),居民用電原則上以住宅為單位(一套住宅為一戶(hù)).

某市隨機(jī)抽取10戶(hù)同一個(gè)月的用電情況,得到統(tǒng)計(jì)表如下:

(1)若規(guī)定第一階梯電價(jià)每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯每度0.8元,試計(jì)算居民用電戶(hù)用電410度時(shí)應(yīng)交電費(fèi)多少元?

(2)現(xiàn)要在這10戶(hù)家庭中任意選取3戶(hù),求取到第二階梯電量的戶(hù)數(shù)的分布列與期望;

(3)以表中抽到的10戶(hù)作為樣本估計(jì)全市居民用電,現(xiàn)從全市中依次抽取10戶(hù),若抽到戶(hù)用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,是矩形,平面,,四棱錐外接球的球心為,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn).給出如下命題:①直線(xiàn)與直線(xiàn)所成的角中最小的角為;②一定不垂直;③三棱錐的體積為定值;④的最小值為.其中正確命題的序號(hào)是__________.(將你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的定義域,并求出當(dāng)時(shí),常數(shù)的值;

2)在(1)的條件下,判斷函數(shù)的單調(diào)性,并用單調(diào)性定義證明;

3)設(shè),若方程有實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為:

(Ⅰ)求直線(xiàn)與曲線(xiàn)公共點(diǎn)的極坐標(biāo);

(Ⅱ)設(shè)過(guò)點(diǎn)的直線(xiàn)交曲線(xiàn),兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年五月最受七中學(xué)子期待的學(xué)生活動(dòng)莫過(guò)于學(xué)生節(jié),在每屆學(xué)生節(jié)活動(dòng)中,著七中校服的布偶七中熊尤其受同學(xué)和老師歡迎.已知學(xué)生會(huì)將在學(xué)生節(jié)當(dāng)天售賣(mài)七中熊,并且會(huì)將所獲得利潤(rùn)全部捐獻(xiàn)于公益組織.為了讓更多同學(xué)知曉,學(xué)生會(huì)宣傳部需要前期在學(xué)校張貼海報(bào)宣傳,成本為250元,并且當(dāng)學(xué)生會(huì)向廠(chǎng)家訂制七中熊時(shí),需另投入成本(元),.通過(guò)市場(chǎng)分析, 學(xué)生會(huì)訂制的七中熊能全部售完.若學(xué)生節(jié)當(dāng)天,每只七中熊售價(jià)為70元,則當(dāng)銷(xiāo)量為______只時(shí),學(xué)生會(huì)向公益組織所捐獻(xiàn)的金額會(huì)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正項(xiàng)數(shù)列:,滿(mǎn)足:是公差為的等差數(shù)列,是公比為2的等比數(shù)列.

1)若,求數(shù)列的所有項(xiàng)的和;

2)若,求的最大值;

3)是否存在正整數(shù),滿(mǎn)足?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知遞增數(shù)列{an}n項(xiàng)和為Sn,且滿(mǎn)足a13,4Sn4n+1an2,設(shè)bnnN*)且數(shù)列{bn}的前n項(xiàng)和為Tn

(Ⅰ)求證:數(shù)列{an}為等差數(shù)列;

(Ⅱ)若對(duì)任意的nN*,不等式λTnn(﹣1)n+1恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案