1.已知某中學(xué)食堂每天供應(yīng)3000名學(xué)生用餐,為了改善學(xué)生伙食,學(xué)校每星期一有A、B兩種菜可供大家免費選擇(每人都會選而且只能選一種菜).調(diào)查資料表明,凡是在這星期一選A種菜的,下星期一會有20%改選B種菜;而選B種菜的,下星期一會有40%改選A種菜.用an,bn分別表示在第n個星期一選A的人數(shù)和選B的人數(shù),如果a1=2000.
(1)請用an、bn表示an+1與bn+1
(2)證明:數(shù)列{an-2000}是常數(shù)列.

分析 (1)凡是在這星期一選A種菜的,下星期一會有20%改選B種菜;而選B種菜的,下星期一會有40%改選A種菜,即可求得an+1=$\frac{4}{5}$an+$\frac{2}{5}$bn,bn+1=$\frac{1}{5}$an+$\frac{3}{5}$;
(2)由an+bn=3000,將bn=3000-an,代入an+1=$\frac{4}{5}$an+$\frac{2}{5}$bn,整理即可得到an+1-2000=$\frac{2}{5}$(an-2000),由a1-2000=0,故數(shù)列{an-2000}是常數(shù)列.

解答 解:(1)由題意知:an+1=$\frac{4}{5}$an+$\frac{2}{5}$bn,bn+1=$\frac{1}{5}$an+$\frac{3}{5}$bn---------(6分)
(2)證明:∵an+1=$\frac{4}{5}$an+$\frac{2}{5}$bn,且an+bn=3000,
∴an+1=$\frac{4}{5}$an+$\frac{2}{5}$(3000-an),
∴an+1=$\frac{2}{5}$an+1200-----(8分)
∴an+1-2000=$\frac{2}{5}$(an-2000)---------(10分)
又∵a1-2000=0,
∴數(shù)列{an-2000}是常數(shù)列.-------(12分)

點評 本題考查數(shù)列在實際問題中的應(yīng)用,考查學(xué)生對數(shù)學(xué)知識的應(yīng)用能力,關(guān)鍵是對題意的理解,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.則抽取的100名觀眾中“體育迷”有15名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何體的三視圖如圖所示,其中側(cè)視圖的下半部分曲線為半圓弧,則該幾何體的表面積為( 。
A.4π+16+4$\sqrt{3}$B.5π+16+4$\sqrt{3}$C.4π+16+2$\sqrt{3}$D.5π+16+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為300,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知在直三棱柱ABC-A1B1C1中,AB⊥BC,且AA1=2AB=2BC=2,E,M分別是CC1,AB1的中點. 
(Ⅰ)證明:EM∥平面ABC;
(Ⅱ)求直線A1E與平面AEB1所成角的正弦值;
(Ⅲ)求二面角B-EM-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.三棱錐S-ABC及其三視圖中的正視圖與側(cè)視圖如圖所示,若三棱錐S-ABC的四個頂點都在同一個球面上,則該球的表面積為(  )
A.84πB.72πC.60πD.48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知三棱錐的三視圖的正視圖是等腰三角形,俯視圖是邊長為$\sqrt{3}$的等邊三角形,側(cè)視圖是直角三角形,且三棱錐的外接球表面積為8π,則三棱錐的高為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定義在R上的函數(shù)f(x),其值域也是R,并且對任意x,y∈R,都有f(xf(y))=xy,則|f(2007)|等于( 。
A.0B.1C.20072D.2007

查看答案和解析>>

同步練習(xí)冊答案