3.已知直線l:x-$\sqrt{3}$y+3=0與橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1交于A,B兩點(diǎn),過(guò)A,B分別作l的垂線與x軸交于C,D兩點(diǎn),則|CD|=( 。
A.$\sqrt{3}$B.$\frac{16}{13}$C.$\frac{32}{13}$D.$\frac{30}{13}$

分析 聯(lián)立$\left\{\begin{array}{l}{x-\sqrt{3}y+3=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得13y2-18$\sqrt{3}y$+15=0,利用弦長(zhǎng)公式出|AB|,直線l:x-$\sqrt{3}$y+3=0的傾斜角為30°,從而|CD|=$\frac{|AB|}{cos30°}$,由此能求出結(jié)果.

解答 解:聯(lián)立$\left\{\begin{array}{l}{x-\sqrt{3}y+3=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,
得13y2-18$\sqrt{3}y$+15=0,
設(shè)A(x1,y1),B(x2,y2),則y1+y2=$\frac{18\sqrt{3}}{13}$,
y1y2=$\frac{15}{13}$,
|AB|=$\sqrt{4[(\frac{18\sqrt{3}}{13})^{2}-4×\frac{15}{13}]}$=$\frac{16\sqrt{3}}{13}$,
∵直線l:x-$\sqrt{3}$y+3=0的傾斜角為30°,
∴|CD|=$\frac{|AB|}{cos30°}$=$\frac{\frac{16\sqrt{3}}{13}}{\frac{\sqrt{3}}{2}}$=$\frac{32}{13}$.
故選:C.

點(diǎn)評(píng) 本題考查線段長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意根的判別式、韋達(dá)定理、弦長(zhǎng)公式、橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)f(x)=(ex+ae-x)sinx為奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若f(x)和g(x)都是奇函數(shù),且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5,則F(x)在(-∞,0)上( 。
A.有最小值-5B.有最大值-5C.有最小值-1D.有最大值-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.從1到9這9個(gè)數(shù)字中取出不同的5個(gè)數(shù)字進(jìn)行排列,問(wèn):奇數(shù)的位置上是奇數(shù)的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合H={1,2,3,4},集合K={1,1.5,2,0,-1,-2},則H∩K為( 。
A.{1,2}B.{1,2,0,-1}C.(-1,2]D.{1.5,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x$-\frac{1}{2}$.
(1)求f(x)的最小值,并寫(xiě)出取得最小值時(shí)的自變量x的集合.
(2)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,已知四邊形ABCD和ABEG均為平行四邊形,點(diǎn)E在平面ABCD內(nèi)的射影恰好為點(diǎn)A,以BD為直徑的圓經(jīng)過(guò)點(diǎn)A,C,AG的中點(diǎn)為F,CD的中點(diǎn)為P,且AD=AB=AE=2
(Ⅰ)求證:平面EFP⊥平面BCE
(Ⅱ)求幾何體ADC-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)解不等式$\frac{2x+1}{3-x}≥1$
(2)已知x>0,y>0,且x+y=1,求 $\frac{4}{x}$+$\frac{9}{y}$ 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題“若x>2,則x>1”的否命題是( 。
A.若x<2,則x<1B.若x≤2,則x≤1C.若x≤1,則x≤2D.若x<1,則x<2

查看答案和解析>>

同步練習(xí)冊(cè)答案