3.已知四邊形ABCD為直角梯形,∠BCD=90°,AB∥CD,且AD=3,BC=2CD=4,點E,F(xiàn)分別在線段AD和BC上,使FECD為正方形,將四邊形ABFE沿EF翻折至使二面角B-EF-C的所成角為60°
(Ⅰ)求證:CE∥面A′DB′
(Ⅱ)求直線A′B′與平面FECD所成角的正弦值

分析 (I)如圖所示,取FB′的中點M,連接CM,A′M.可得四邊形A′EMB′是平行四邊形.A′B′∥EM.同理可得A′D∥CM,可得平面EMC∥平面A′DB′,即可證明CE∥面A′DB′.
(II)取DE的中點O,建立如圖所示的空間直角坐標系.∠A′ED=∠B′FC=60°.平面EFCD的一個法向量為$\overrightarrow{n}$=(0,0,1).可得$cos<\overrightarrow{{A}^{′}{B}^{′}},\overrightarrow{n}>$=$\frac{\overrightarrow{{A}^{′}{B}^{′}}•\overrightarrow{n}}{|\overrightarrow{{A}^{′}{B}^{′}}||\overrightarrow{n}|}$.可得直線A′B′與平面FECD所成角的正弦值=|$cos<\overrightarrow{{A}^{′}{B}^{′}},\overrightarrow{n}>$|.

解答 (I)證明:如圖所示,取FB′的中點M,連接CM,A′M.
∵A′E$\underset{∥}{=}$B′M,
∴四邊形A′EMB′是平行四邊形.
∴A′B′∥EM.
∵A′M$\underset{∥}{=}$CD,
∴四邊形A′MCD是平行四邊形,
∴A′D∥CM,
又∵CM∩EM=M,A′B′∩A′D=A′,
∴平面EMC∥平面A′DB′,
由CE?平面CME.
∴CE∥面A′DB′.
(II)解:取DE的中點O,建立如圖所示的空間直角坐標系.∠A′ED=∠B′FC=60°.
則${B}^{′}(0,2,\sqrt{3})$,A′$(\frac{1}{2},0,\frac{\sqrt{3}}{2})$,$\overrightarrow{{A}^{′}{B}^{′}}$=$(\frac{1}{2},-2,-\frac{\sqrt{3}}{2})$.
平面EFCD的一個法向量為$\overrightarrow{n}$=(0,0,1).
∴$cos<\overrightarrow{{A}^{′}{B}^{′}},\overrightarrow{n}>$=$\frac{\overrightarrow{{A}^{′}{B}^{′}}•\overrightarrow{n}}{|\overrightarrow{{A}^{′}{B}^{′}}||\overrightarrow{n}|}$=$\frac{\frac{-\sqrt{3}}{2}}{\sqrt{\frac{1}{4}+4+\frac{3}{4}}×1}$=-$\frac{\sqrt{15}}{10}$.
∴直線A′B′與平面FECD所成角的正弦值=|$cos<\overrightarrow{{A}^{′}{B}^{′}},\overrightarrow{n}>$|=$\frac{\sqrt{15}}{10}$.

點評 本題考查了面面平行的判定定理與性質定理、平行四邊形的判定與性質、線面角、數(shù)量積運算性質、直角三角形的邊角關系、法向量的應用,考查了空間想象能力、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.方程|x|-1=$\sqrt{1-(y-1)^{2}}$所表示的圖形是( 。
A..一個半圓B.一個圓C.兩個半圓D.兩個圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設x1,x2∈(0,$\frac{π}{2}$),且x1≠x2,下列不等式中成立的是( 。
①$\frac{1}{2}(sin{x}_{1}+sin{x}_{2})$>sin$\frac{{x}_{1}+{x}_{2}}{2}$;
②$\frac{1}{2}$(cosx1+cosx2)>cos$\frac{{x}_{1}+{x}_{2}}{2}$;
③$\frac{1}{2}$(tanx1+tanx2)>tan$\frac{{x}_{1}+{x}_{2}}{2}$;
④$\frac{1}{2}$($\frac{1}{tan{x}_{1}}$+$\frac{1}{tan{x}_{2}}$)>$\frac{1}{tan\frac{{x}_{1}+{x}_{2}}{2}}$.
A.①②B.③④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.命題“存在x∈R,x2+2ax+1<0”為假命題,則a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.有各不相同的5紅球、3黃球、2白球,事件A:從紅球和黃球中各選1球,事件B:從所有球中選取2球,則事件A發(fā)生是事件B發(fā)生的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.△ABC的兩邊長為2,3,其夾角的余弦為$\frac{1}{3}$,則其外接圓半徑為(  )
A.$\frac{{9\sqrt{2}}}{2}$B.$\frac{{9\sqrt{2}}}{4}$C.$\frac{{9\sqrt{2}}}{8}$D.$\frac{{2\sqrt{2}}}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC的三邊分別為a,b,c,a2=b2+c2-bc,則A等于(  )
A.30°B.60°C.75°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知直線a,b和平面α,則下列命題正確的是( 。
A.若a∥b,b∥α,則a∥αB.a⊥b,b⊥α,則a∥αC.若a∥b,b⊥α,則a⊥αD.若a⊥b,b∥α,則a⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=3sin(3x+$\frac{π}{4}$)的最小正周期為$\frac{2π}{3}$.

查看答案和解析>>

同步練習冊答案