已知雙曲線C:
x2
a2
-
y2
b2
=1的離心率為
3
,點(diǎn)(
3
,0)是雙曲線的一個(gè)頂點(diǎn).
(1)求雙曲線的方程;
(2)經(jīng)過(guò)的雙曲線右焦點(diǎn)F2作傾斜角為30°直線l,直線l與雙曲線交于不同的A,B兩點(diǎn),求AB的長(zhǎng).
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)由已知得
c
a
=
3
a=
3
,由此能求出雙曲線的方程.
(2)直線l的方程為y=
3
3
(x-3),聯(lián)立
x2
3
-
y2
6
=1
y=
3
3
(x-3)
,得5x2+6x-27=0,由此能求出|AB|.
解答: 解:(1)∵雙曲線C:
x2
a2
-
y2
b2
=1的離心率為
3

點(diǎn)(
3
,0)是雙曲線的一個(gè)頂點(diǎn),
c
a
=
3
a=
3
,解得c=3,b=
6
,
∴雙曲線的方程為
x2
3
-
y2
6
=1

(2)雙曲線
x2
3
-
y2
6
=1
的右焦點(diǎn)為F2(3,0),
∴經(jīng)過(guò)的雙曲線右焦點(diǎn)F2作傾斜角為30°直線l的方程為y=
3
3
(x-3),
聯(lián)立
x2
3
-
y2
6
=1
y=
3
3
(x-3)
,得5x2+6x-27=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-
6
5
,x1x2=-
27
5

|AB|=
1+
1
3
(-
6
5
)2-4×(-
27
5
)
=
16
3
5
點(diǎn)評(píng):本題考查橢圓方程的求法,考查弦長(zhǎng)的求法,解題時(shí)要認(rèn)真審題,注意弦長(zhǎng)公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:(
1
2
)x2-2
≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的函數(shù)g(x)=|-x2+2bx+c|在區(qū)間[-1,1]上的最大值為M.
(1)當(dāng)b=1,c=2時(shí),求M的值.
(2)若|b|>1,證明對(duì)任意的c,都有M>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(2,0)作直線l交橢圓
x2
2
+y2=1于不同兩點(diǎn)A,B,設(shè)G為線段AB的中點(diǎn),直線OG交于C,D.
(1)若點(diǎn)G的橫坐標(biāo)為
2
3
,求l的方程;
(2)設(shè)△ABD與△ABC的面積分別為S1,S2,求|S1-S2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線x+y+1=0與以橢圓C的右焦點(diǎn)為圓心,以
2
b為半徑的圓相切.
(1)求橢圓的方程.
(2)若過(guò)橢圓C的右焦點(diǎn)F作直線L交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),且
MA
=λ1
AF,
MB
=λ2
BF
,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,曲線C1
x2
16
+
y2
m2
=1和C2
x2
16
+
y2
n2
=1(m>n>0)的公共頂點(diǎn)為M(-4,0)和N(4,0),過(guò)原點(diǎn)O且不與x軸重合的直線l與C1,C2的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,
(1)若m,n∈N*,且當(dāng)l傾斜角為45°時(shí),B恰為A,O的中點(diǎn),求m,n的值;
(2)若
S△MBD
S△ABN
=
m
n
=
2
+1,求直線l的方程;
(3)若存在直線l使
S△MBD
S△ABN
=
m
n
=λ,求λ取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5位同學(xué)各自隨機(jī)從3個(gè)不同城市中選擇一個(gè)城市旅游,則3個(gè)城市都有人選的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c是空間三條直線,α,β是空間兩個(gè)平面,則下列命題中,命題不正確的是( 。
A、當(dāng)c⊥α?xí)r,若α∥β,則c⊥β
B、當(dāng)b?α?xí)r,若α⊥β,則b⊥β
C、當(dāng)b?α,a?α且c是a在α內(nèi)的射影時(shí),若a⊥b,則b⊥c
D、當(dāng)b?α且c?α?xí)r,若b∥c,則c∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.
(Ⅰ)若A⊆B,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案