精英家教網 > 高中數學 > 題目詳情
4.計算:($\sqrt{3}$-2)0-log2$\sqrt{2}$=$\frac{1}{2}$.

分析 根據指數冪和對數的運算性質計算即可

解答 解:原式=1-$\frac{1}{2}$=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$

點評 本題考查了指數冪和對數的運算性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

14.若△ABC的內角A,B,C所對的邊分別為a,b,c,已知2bsin2A=3asinB,且c=2b,則$\frac{a}$等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.等差數列{an}中,S3=$\frac{3}{5}$,S5=$\frac{5}{3}$,則S8=$\frac{64}{15}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知拋物線C:y2=2px(p>0)的焦點為F,直線y=2與y的軸的交點為P,與C的交點為Q,且|QF|=2|PQ|.
(1)求C的方程;
(2)邊焦點F的直線l斜率為-1,判斷C上是否存在兩點M,N,使得M,N關于直線l對稱,若存在,求出|MN|,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若冪函數f(x)=(m2-m-1)x1-m是偶函數,則實數m=( 。
A.-1B.2C.3D.-1或2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.求滿足下列條件的直線方程:
(1)求經過直線l1:x+3y-3=0和l2:x-y+1=0的交點,且平行于直線2x+y-3=0的直線l的方程;
(2)已知直線l1:2x+y-6=0和點A(1,-1),過點A作直線l與l1相交于點B,且|AB|=5,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知橢圓Γ:$\frac{{x}^{2}}{4}$+y2=1的左頂點為R,點A(2,1),B(-2,1),O為坐標原點.
(I)若P是橢圓Γ上任意一點,$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,求m2+n2的值;
(II)設Q是橢圓Γ上任意一點,S(6,0),求$\overrightarrow{QS}$•$\overrightarrow{QR}$的取值范圍;
(Ⅲ)設M(x1,y1),N(x2,y2)是橢圓Γ上的兩個動點,滿足kOM•kON=kOA•kOB,試探究△OMN的面積是否為定值,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=PA=a,點O、D分別是AC、PC的中點,OP⊥底面ABC.
(1)求證:PA∥平面BOD.
(2)求異面直線PA與BD所成角余弦值的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知函數f(x)=$\left\{\begin{array}{l}{1+\frac{1}{x}(x>1)}\\{{x}^{2}+1(-1≤x≤1)}\\{2x+3(x<-1)}\end{array}\right.$.
(1)求f{f[f(-2)]}的值;
(2)若f(a)=$\frac{3}{2}$,求a的值.

查看答案和解析>>

同步練習冊答案