1.用30cm的鐵絲圍成一個扇形,當扇形半徑為$\frac{15}{2}$cm的時候扇形面積最大?

分析 設出扇形的圓心角α,半徑r,面積S,弧長l,根據(jù)題意求出扇形面積S的表達式,求出最大值以及對應的半徑r是多少.

解答 解:設扇形的圓心角為α,半徑為r,面積為S,弧長為l,
∴扇形的周長是l+2r=30;
∴l(xiāng)=30-2r,
∴S=$\frac{1}{2}$•l•r=$\frac{1}{2}$(30-2r)•r=-r2+15r=-(r-$\frac{15}{2}$)2+$\frac{225}{4}$
∴當半徑r=$\frac{15}{2}$cm時,扇形面積的最大值是$\frac{225}{4}$cm2,
故答案為:$\frac{15}{2}$cm.

點評 本題考查了扇形面積的應用問題,解題時應建立目標函數(shù),求目標函數(shù)的最值即可,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.某省就所制訂的《中長期教育改革和發(fā)展規(guī)劃綱要》(意見稿)向社會公開征求意見,為確保搜集的意見廣泛有效,派出了面向不同層次的三個工作組A、B、C,分別有組員36人、36人、18人.現(xiàn)采用分層抽樣的方法從A、B、C三個工作組中抽取共5名代表,在工作總結會上發(fā)言.
(1)求從三個工作組中分別抽取的人數(shù);
(2)若從抽取的5名代表中再隨機抽取2名參與意見稿的修改工作,求這兩名上沒有A組人員的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.橢圓E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1內(nèi)有一點P(1,1).
(1)求經(jīng)過P并且以P為中點的弦所在直線方程;
(2)如果直線l:x=my+4與橢圓E相交于A、B兩點,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=ex+elnx-2ax在x∈(1,3)上單調(diào)遞增,則實數(shù)a的取值范圍為(  )
A.(-∞,$\frac{{e}^{3}}{2}$+$\frac{e}{6}$)B.[($\frac{{e}^{3}}{2}$+$\frac{e}{6}$,+∞)C.(-∞,e)D.(-∞,e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.求函數(shù)y=$\frac{\sqrt{-2{x}^{2}+x+10}}{|x|-2}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知單位圓與角α的終邊的交點為(sin$\frac{4π}{7}$,cos$\frac{4π}{7}$),則α可能為( 。
A.$\frac{4π}{7}$B.$\frac{π}{14}$C.$\frac{15π}{14}$D.$\frac{27π}{14}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)y=xsinx的部分圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設點P(x,y)是曲線a|x|+b|y|=1(a>0,b>0)上的動點,且滿足$\sqrt{{x}^{2}+{y}^{2}+2y+1}$+$\sqrt{{x}^{2}+{y}^{2}-2y+1}$≤2$\sqrt{2}$,則a+$\sqrt{2}$b的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.用某種型號的鋼板焊接一個長為1m的無蓋長方體容器(接縫忽略不計他),要求其容積為2m3,則至少需要這種型號的鋼板8m2

查看答案和解析>>

同步練習冊答案