精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面 , , 分別為, 的中點.

(Ⅰ)求證: ;

(Ⅱ)求四棱錐的體積和截面的面積.

【答案】(1)見解析(2)

【解析】試題分析:(1)先根據線面垂直性質定理得,而,所以由線面垂直判定定理得平面,即得, 再由等腰三角形性質得,因此由線面垂直判定定理得平面,即證得;(2)易得四棱錐的高,再根據錐體體積公式得四棱錐的體積;要求截面的面積,先確定截面的形狀:由三角形中位線性質得,即得,而平面,所以,即四邊形是直角梯形,最后利用直角梯形面積公式求解面積.

試題解析:(Ⅰ)證明:∵的中點, ,∴,

底面,得,

,即,

平面,∴,∴平面

(Ⅱ)解:由,得底面直角梯形的面積

底面,得四棱錐的高

所以四棱錐的體積

分別為, 的中點,得,且,

,故,由(Ⅰ)得平面,又平面,

,∴四邊形是直角梯形,

中, ,

∴截面的面積

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數y=cosπx的圖象與函數y=( |x1|(﹣3≤x≤5)的圖象所有交點的橫坐標之和等于(
A.4
B.6
C.8
D.10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的對稱軸為坐標軸,離心率為,且一個焦點坐標為

(1)求橢圓的方程;

(2)設直線與橢圓相交于兩點,以線段為鄰邊作平行四邊形,其中點在橢圓上, 為坐標原點,求點到直線的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一鮮花店根據一個月(30天)某種鮮花的日銷售量與銷售天數統(tǒng)計如下,將日銷售量落入各組區(qū)間頻率視為概率.

日銷售量(枝)

銷售天數

3天

5天

13天

6天

3天

(1)試求這30天中日銷售量低于100枝的概率;

(2)若此花店在日銷售量低于100枝的時候選擇2天作促銷活動,求這2天恰好是在日銷售量低于50枝時的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數f(x)=sin(2x+ ),下列命題: ①函數圖象關于直線x=﹣ 對稱;
②函數圖象關于點( ,0)對稱;
③函數圖象可看作是把y=sin2x的圖象向左平移個 單位而得到;
④函數圖象可看作是把y=sin(x+ )的圖象上所有點的橫坐標縮短到原來的 倍(縱坐標不變)而得到;其中正確的命題是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中, , , 分別是的中點。

(Ⅰ)求證: ;

(Ⅱ)求直線和平面所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,曲線在點處的切線與直線垂直(其中為自然對數的底數).

(I)求的解析式及單調遞減區(qū)間;

(II)是否存在常數,使得對于定義域內的任意恒成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

(1)若函數是奇函數,求實數的值;

(2)若對任意的實數,函數為實常數)的圖象與函數的圖象總相切于一個定點.

① 求的值;

② 對上的任意實數,都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點,求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.

查看答案和解析>>

同步練習冊答案