【題目】設(shè)函數(shù).
(1)若函數(shù)是奇函數(shù),求實(shí)數(shù)的值;
(2)若對(duì)任意的實(shí)數(shù),函數(shù)(為實(shí)常數(shù))的圖象與函數(shù)的圖象總相切于一個(gè)定點(diǎn).
① 求與的值;
② 對(duì)上的任意實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍.
【答案】(1)0;(2)①;②.
【解析】試題分析:
(1)由奇函數(shù)的 定義得到關(guān)于實(shí)數(shù)a的方程,解方程可得a=0;
(2)由導(dǎo)函數(shù)研究函數(shù)的 切線可得切點(diǎn)為,切線的方程為,則.
(3)由題意分類討論 和兩種情況可得實(shí)數(shù)的取值范圍是.
試題解析:
解:(1)因?yàn)楹瘮?shù)是奇函數(shù),所以恒成立,
即,得恒成立,
.
(2)①,設(shè)切點(diǎn)為,
則切線的斜率為,
據(jù)題意是與無(wú)關(guān)的常數(shù),故,切點(diǎn)為, 由點(diǎn)斜式得切線的方程為,即,故.
② 當(dāng)時(shí),對(duì)任意的,都有;
當(dāng)時(shí),對(duì)任意的,都有;
故對(duì)恒成立,或對(duì)恒成立.
而,設(shè)函數(shù).
則對(duì)恒成立,或對(duì)恒成立, ,
當(dāng)時(shí), ,,恒成立,所以在上遞增, ,
故在上恒成立,符合題意. 當(dāng)時(shí),令,得,令,得,
故在上遞減,所以,
而設(shè)函數(shù),
則, 恒成立,
在上遞增, 恒成立,
在上遞增, 恒成立,
即,而,不合題意.
綜上,知實(shí)數(shù)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題:實(shí)數(shù)滿足(),命題:實(shí)數(shù)滿足.
(1)若且“”為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面, , , 分別為, 的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求四棱錐的體積和截面的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)在平面直角坐標(biāo)系xOy中,已知兩點(diǎn)和,動(dòng)點(diǎn)M滿足,設(shè)點(diǎn)M的軌跡為C,半拋物線:(),設(shè)點(diǎn).
(Ⅰ)求C的軌跡方程;
(Ⅱ)設(shè)點(diǎn)T是曲線上一點(diǎn),曲線在點(diǎn)T處的切線與曲線C相交于點(diǎn)A和點(diǎn)B,求△ABD的面積的最大值及點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一兒童游樂(lè)場(chǎng)擬建造一個(gè)“蛋筒”型游樂(lè)設(shè)施,其軸截面如圖中實(shí)線所示. 是等腰梯形, 米, (在的延長(zhǎng)線上, 為銳角). 圓與都相切,且其半徑長(zhǎng)為米. 是垂直于的一個(gè)立柱,則當(dāng)的值設(shè)計(jì)為多少時(shí),立柱最矮?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過(guò)原點(diǎn)的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經(jīng)過(guò)原點(diǎn)且被圓C截得的線段長(zhǎng)為2的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
(1)若,求在區(qū)間[0,3]上的最大值;
(2)若,寫出的單調(diào)區(qū)間;
(3)若存在,使得方程有三個(gè)不相等的實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第96屆(春季)全國(guó)糖酒商品交易會(huì)于2017年3月23日至25日在四川舉辦.交易會(huì)開(kāi)始前,展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與餐廳所需原材料數(shù)量的關(guān)系,查閱了最近5次交易會(huì)的參會(huì)人數(shù)(萬(wàn)人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):
(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)已知購(gòu)買原材料的費(fèi)用(元)與數(shù)量(袋)的關(guān)系為投入使用的每袋原材料相應(yīng)的銷售收入為600元,多余的原材料只能無(wú)償返還.若餐廳原材料現(xiàn)恰好用完,據(jù)悉本次交易會(huì)大約有14萬(wàn)人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)銷售收入原材料費(fèi)用).
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn).那么異面直線OE和FD1所成角的余弦值為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com