8.已知函數(shù)f(x)=x3-x+2,則f(x)在[0,1]上的最小值為$2-\frac{{2\sqrt{3}}}{9}$.

分析 先求導(dǎo)函數(shù),確定極值,再比較端點(diǎn)處函數(shù)值的大小,從而得解.

解答 解:由函數(shù)f(x)=x3-x+2,得f'(x)=3x2-1=0,即$x=±\frac{\sqrt{3}}{3}$.
∵f(0)=2,$f(\frac{\sqrt{3}}{3})=2-\frac{2\sqrt{3}}{9}$,f(1)=2,
∴函數(shù)f(x)=x3-x+2在[0,1]上的最小值為$2-\frac{{2\sqrt{3}}}{9}$.
故答案為:$2-\frac{{2\sqrt{3}}}{9}$.

點(diǎn)評 本題以函數(shù)為載體,考查導(dǎo)數(shù),考查利用導(dǎo)數(shù)求函數(shù)的最值,注意其方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ)解不等式|3-2x|>5;
(Ⅱ)若?x∈[1,2],x-|x-a|≤1恒成立,求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知平面上兩點(diǎn)A(-2,0),B(2,0),在圓C:(x-1)2+(y+1)2=4上取一點(diǎn)P,求使|AP|2+|BP|2取得最小值時點(diǎn)P的坐標(biāo),取得最大值時點(diǎn)P的坐標(biāo),并求出最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ex+ln(x+1)-ax,a∈R.
(1)g(x)為f(x)的導(dǎo)函數(shù),討論g(x)的零點(diǎn)個數(shù);
(2)當(dāng)x≥0時,不等式ex+(x+1)ln(x+1)≥$\frac{1}{2}$ax2+ax+1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}$(α為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$.
(1)求曲線C在直角坐標(biāo)系中的普通方程和直線l的傾斜角;
(2)設(shè)點(diǎn)P(0,1),若直線l與曲線C相交于不同的兩點(diǎn)A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.由直線y=2x及曲線y=4-2x2圍成的封閉圖形的面積為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|x-1|+|x-3|+a(x2-2x),其中a≥0.
(1)若a=0,求f(x)的最小值;
(2)若存在實(shí)數(shù)x0,使得f(x0)=1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在(x-$\frac{1}{2x}$)6的展開式中,x4的系數(shù)為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a為實(shí)數(shù),x=1是函數(shù)f(x)=$\frac{1}{2}$x2-6x+alnx的一個極值點(diǎn).若函數(shù)f(x)在區(qū)間(2m-1,m+1)上單調(diào)遞減,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案