13.工人制造機(jī)器零件尺寸在正常情況下,服從正態(tài)分布N(μ,σ2).在一次正常實(shí)驗(yàn)中,取1000個(gè)零件時(shí),屬于(μ-3σ,μ+3σ)這個(gè)尺寸范圍零件個(gè)數(shù)最可能為( 。
A.997個(gè)B.954個(gè)C.682個(gè)D.3 個(gè)

分析 正態(tài)分布的特點(diǎn)知屬于(μ-3σ,μ+3σ)的事件的概率為0.997,利用此概率就解即可.

解答 解:由3σ原則知屬于(μ-3σ,μ+3σ)的事件的概率為0.997.
故1000個(gè)零件中有997個(gè)在范圍內(nèi).
故選:A.

點(diǎn)評(píng) 本題考查正態(tài)分布的特點(diǎn)和應(yīng)用,考查利用所學(xué)知識(shí)解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若函數(shù)f(x)=2x2-lnx在其定義域內(nèi)的一個(gè)子區(qū)間(k-1,k+1)內(nèi)是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( 。
A.$[{1,\frac{3}{2}})$B.$[{\frac{3}{2},+∞})$C.[1,2)D.$[{\frac{3}{2},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)y=cos(2x-$\frac{π}{3}$)的單調(diào)減區(qū)間是( 。
A.[kπ-$\frac{π}{2}$,kπ+$\frac{5π}{12}$],(k∈Z)B.[kπ+$\frac{π}{3}$,kπ+$\frac{2π}{3}$],(k∈Z)
C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],(k∈Z)D.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知△ABC的內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別是a,b,c,設(shè)向量$\overrightarrow m$=(a+b,sinC),$\overrightarrow n$=($\sqrt{3}$a+c,sinB-sinA),若$\overrightarrow m$∥$\overrightarrow n$,則角B的大小為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義在R上的函數(shù)f(x)滿足f(x-1)的對(duì)稱(chēng)軸為x=1,$f({x-1})=\frac{4}{f(x)}$(f(x)≠0),且在區(qū)間(-1,0)上單調(diào)遞減.已知α,β是鈍角三角形中兩銳角,則f(sinα)和f(cosβ)的大小關(guān)系是( 。
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若正方體ABCD-A1B1C1D1中心O,以O(shè)為球心的球O與正方體的所有棱均相切,以向量$\overrightarrow{AB}$為正視圖的視圖方向,那么該正視圖為如圖( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.從5名志愿者中選出4名分別從事主持、策劃、演員、配樂(lè)四項(xiàng)不同的工作,其中甲志愿者不能從事配樂(lè)工作,則不同的選排方法共有( 。
A.96種B.180種C.120種D.72種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知公比為q的等比數(shù)列{an}的前6項(xiàng)和S6=21,且4a1,$\frac{3}{2}$a2,a2成等差數(shù)列.
(1)求an;
(2)設(shè){bn}是首項(xiàng)為2,公差為-a1的等差數(shù)列,求數(shù)列{|bn|}前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.定義:min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$.在區(qū)域$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤6}\end{array}\right.$內(nèi)任取一點(diǎn)P(x,y),則x,y滿足min{3x-2y+6,x-y+4}=x-y+4的概率為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案