A. | [-$\frac{1}{2}$,+∞) | B. | [-$\frac{3}{2}$,+∞) | C. | [-1,+∞) | D. | [-2,+∞) |
分析 利用構造法設g(x)=f(x)-2x2,推出g(x)為奇函數(shù),判斷g(x)的單調性,然后推出不等式得到結果.
解答 解:∵f(x)=4x2-f(-x),
∴f(x)-2x2+f(-x)-2x2=0,
設g(x)=f(x)-2x2,則g(x)+g(-x)=0,
∴函數(shù)g(x)為奇函數(shù).
∵x∈(-∞,0)時,f′(x)<4x,
g′(x)=f′(x)-4x<0,
故函數(shù)g(x)在(-∞,0)上是減函數(shù),
故函數(shù)g(x)在(0,+∞)上也是減函數(shù),
若f(m+1)≤f(-m)+4m+2,
則f(m+1)-2(m+1)2≤f(-m)-2m2,
即g(m+1)≤g(-m),
∴m+1≥-m,解得:m≥-$\frac{1}{2}$,
故選:A.
點評 本題考查函數(shù)奇偶性、單調性、導數(shù)的綜合應用,考查分析問題解決問題的能力,難度比較大.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 3.5 | 4.5 | 5.5 | 6.5 |
y | 3 | 4m | 4 | 5 |
A. | 1 | B. | 0.85 | C. | 0.95 | D. | 0.9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com