【題目】201510月十八屆五中全會決定201611日起全國統(tǒng)一實(shí)施全面兩孩政策,為了了解適齡民眾對放開生育二胎政策的態(tài)度,某市進(jìn)行了一次民意調(diào)查,參與調(diào)查的100位市民中,年齡分布情況如下圖所示,并得到適齡民眾對放開生育二胎政策的態(tài)度數(shù)據(jù)如下表:

生二胎

不生二胎

合計(jì)

25~35

10

35~50

30

合計(jì)

100

1)填寫上面的列聯(lián)表;

2)根據(jù)調(diào)查數(shù)據(jù),有多少的把握認(rèn)為生二胎與年齡有關(guān),說明理由;

3)調(diào)查對象中決定生二胎的民眾有六人分別來自三個(gè)不同的家庭且為父子,各自家庭都有一個(gè)約定:父親先生二胎,然后兒子生二胎,則這三個(gè)家庭二胎出生的日期的先后順序有多少種?

參考數(shù)據(jù):

0.15

0.10

0.05

0.010

2.072

2.706

3.841

6.635

(參考公式:,其中

【答案】1)見解析;(290% 以上的把握認(rèn)為生二胎與年齡有關(guān)”;(3 .

【解析】

試題分析:(1)根據(jù)題意,填寫列聯(lián)表即可;
2)根據(jù)調(diào)查數(shù)據(jù)計(jì)算,對照數(shù)表即可得出結(jié)論;
3)分別計(jì)算三對父子的二胎出生日期僅為不同的二天、不同的三天、不同的四天、不同的五天和不同的六天時(shí)的種數(shù),求和即可.

試題解析:

解:(1

生二胎

不生二胎

合計(jì)

2535

(45)

10

(55)

3550

30

(15)

(45)

合計(jì)

(75)

(25)

100

-------3

(2) -7

所以有90% 以上的把握認(rèn)為生二胎與年齡有關(guān)”-------------8

3)(以前的答案有誤)三對父子的二胎出生日期僅為不同的二天,則有1種;

三對父子的二胎出生日期僅為不的三天,則有種;     --------9

三對父子的二胎出生日期僅為不同的四天,則有種;10

三對父子的二胎出生日期僅為不同的五天,則有

種;          --------11

三對父子的二胎出生日期僅為不同的六天,則有

.

故共計(jì)----12

(后四種每寫對一種得1分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin-2·sin2x.

(1) 求函數(shù)f(x)的最小正周期;

(2) 求函數(shù)f(x)圖象的對稱軸方程、對稱中心的坐標(biāo);

(3) 當(dāng)0≤x≤時(shí),求函數(shù)f(x)的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三個(gè)元素,分別作為一個(gè)三位數(shù)的個(gè)位數(shù),十位數(shù)和百位數(shù),記這個(gè)三位數(shù)為a,現(xiàn)將組成a的三個(gè)數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=219,則I(a)=129,D(a)=921),閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè)a,則輸出b的值為

A.792 B.693

C.594 D.495

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:的離心率為,點(diǎn)在橢圓C上.

1求橢圓C的方程;

2設(shè)動(dòng)直線與橢圓C有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)O為圓心的圓,滿足此圓與相交兩點(diǎn),兩點(diǎn)均不在坐標(biāo)軸上,且使得直線, 的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi),對產(chǎn)品進(jìn)行促銷,在一年內(nèi),預(yù)計(jì)年銷量Q(萬件)與廣告費(fèi)x(萬件)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為3萬元,每年產(chǎn)1萬件此產(chǎn)品仍需要投入32萬元,若年銷售額為,而當(dāng)年產(chǎn)銷量相等。

(1)試將年利潤P(萬件)表示為年廣告費(fèi)x(萬元)的函數(shù);

(2)當(dāng)年廣告費(fèi)投入多少萬元時(shí),企業(yè)年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知?jiǎng)又本與橢圓相交于兩點(diǎn).

①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;

②已知點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:),將數(shù)據(jù)按照,…,分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)若該市有110萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請說明理由;

(3)估計(jì)居民月均用水量的中位數(shù)(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時(shí),求曲線處的切線方程;

)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù)

1)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;

2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若內(nèi)恒成立,則稱為函數(shù)類對稱點(diǎn),當(dāng)時(shí),試問是否存在類對稱點(diǎn),若存在,請至少求出一個(gè)類對稱點(diǎn)的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案