【題目】已知函數(shù).

(1)令,若在區(qū)間上不單調,求的取值范圍;

(2)當時,函數(shù)的圖象與軸交于兩點,且,又的導函數(shù).若正常數(shù),滿足條件.試比較與0的關系,并給出理由

【答案】(1)(2)見解析.

【解析】

1)先求得,因為gx)在區(qū)間(0,3)上不單調,所以g'x)=0在(03)上有實數(shù)解,且無重根.由g'x)=0,求得,由此可得a的范圍.(2)由題意可得,fx)﹣mx0有兩個實根x1,x2,化簡可得.可得h′(α+β,由條件知(2α1)()≤0,利用分析法結合構造函數(shù)證明h′(α+β

(1)因為,所以,

因為在區(qū)間上不單調,所以上有實數(shù)解,且無重根,

,有,,令t=x+1>4

y=2(t+t>4單調遞增,故

(2),又有兩個實根,

,兩式相減,得,

,

于是

.

,.

要證:,只需證:

只需證:.(*)

,(*)化為,只需證

上單調遞增,,,即.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在軸上,且經(jīng)過點.

1)求圓的標準方程;

2)過點的直線與圓相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質量指數(shù)是檢測空氣質量的重要參數(shù),其數(shù)值越大說明空氣污染狀況越嚴重,空氣質量越差.某地環(huán)保部門統(tǒng)計了該地區(qū)某月1日至24日連續(xù)24天的空氣質量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說法錯誤的是( )

A. 該地區(qū)在該月2日空氣質量最好

B. 該地區(qū)在該月24日空氣質量最差

C. 該地區(qū)從該月7日到12日持續(xù)增大

D. 該地區(qū)的空氣質量指數(shù)與這段日期成負相關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),mR

1)討論fx)的單調性;

2)若m∈(-1,0),證明:對任意的x1,x2[1,1-m],4fx1+x25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為,為參數(shù))

1)求曲線的直角坐標方程;

2)設直線與曲線交于兩點,點的直角坐標為,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知直線2xy﹣1=0與直線x﹣2y+1=0交于點P

求過點P且平行于直線3x+4y﹣15=0的直線的方程;(結果寫成直線方程的一般式)

求過點P并且在兩坐標軸上截距相等的直線方程(結果寫成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列命題:

①在函數(shù)的圖象中,相鄰兩個對稱中心的距離為

②函數(shù)的圖象關于點對稱;

的必要不充分條件;

④在中,若,則角等于.

其中是真命題的序號為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為與曲線C相交于不同的兩點M,N.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)若,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形,由波蘭數(shù)學家謝爾賓斯基在1915年提出.在一個正三角形中,挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色三角形代表挖去的部分,黑色三角形為剩下的部分,我們稱此三角形為謝爾賓斯基三角形.若在圖(3)內隨機取一點,則此點取自謝爾賓斯基三角形的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案