16.已知函數(shù)f(x)=3x-a,g(x)=x2-4x,若g[f(4)]=5,求f[g(2)]的值.

分析 根據(jù)條件g[f(4)]=5,得a的值,然后,利用代入法進行計算即可.

解答 解:f(4)=12-a,
由g(x)=x2-4x=5得x2-4x-5=0,
得x=5或x=-1,
∵g[f(4)]=5,
∴f(4)=5或f(4)=-1,
即12-a=5或12-a=-1,
得a=7或a=13,
∵g(2)=4-8=-4,
∴若a=7,則f(x)=3x-7,此時f[g(2)]=f(-4)=-12-7=-19,
若a=13,則f(x)=3x-13,此時f[g(2)]=f(-4)=-12-13=-25.

點評 本題主要考查函數(shù)值的計算,根據(jù)條件求出a的值以及利用復合函數(shù)之間的關(guān)系進行求解即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.在三棱錐S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=$\sqrt{3}$,SB=2$\sqrt{2}$.
(1)求三棱錐S-ABC的體積;
(2)證明:BC⊥SC;
(3)求二面角C-SA-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知M是圓C:(x-1)2+y2=1上的點,N是圓C′:(x-4)2+(y-4)2=82上的點,則|MN|的最小值為(  )
A.4B.4$\sqrt{2}$-1C.2$\sqrt{2}$-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.解方程$\sqrt{3x-5}$-$\sqrt{x+2}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.拋物線x2=2y,直線x-y-1=0都與動圓C只有一個公共點,則動圓C的面積最小值為$\frac{π}{32}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)平面內(nèi)到兩個定點的距離之比為常數(shù)k(k≠1)的點的軌跡是圓,這個圓就是阿波羅圓.設(shè)A(m,0),B(2m,0)(m≠0),動點M(x,y)到點A、B的距離之比為$\frac{\sqrt{2}}{2}$.求證動點M的軌跡是一阿波羅圓.
(2)設(shè)直線t(x-2)-y=0所過定點為P,對(1)M的軌跡在m=1時,過定點P作動直線l交M的軌跡于C,D兩點.求△COD的面積最大時所對應(yīng)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在直角三角形ABC中,∠CAB=$\frac{π}{2}$,AB=2,AC=$\frac{\sqrt{2}}{2}$,DO垂直AB于點O[其中O為原點],且D(0,2),OA=OB,曲線E過C點,一點P在C上運動,且滿足|PA|+|PB|的值不變.
(1)求曲線E的方程;
(2)過點D的直線L與曲線E相交于不同的兩點M,N,且M在NB之間,使$\frac{DM}{DN}$=λ,試確定實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=ax2+ln(x+b).
(1)當a=0時,曲線y=f(x)與直線y=x+1相切,求b的值;
(2)當b=1時,函數(shù)y=f(x)圖象上的點都在x-y≥0所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某商場欲經(jīng)銷某種商品,考慮到不同顧客的喜好,決定同時銷售A,B兩個品牌,根據(jù)生產(chǎn)廠家營銷策略,結(jié)合本地區(qū)以往經(jīng)銷該商品的數(shù)據(jù)統(tǒng)計分析,A品牌的銷售利潤y1與投入資金x成正比,其關(guān)系如圖所示,B品牌的銷售利潤y2與投入資金x的關(guān)系為y2=$\frac{3}{4}\sqrt{x}$.
(1)求A品牌的銷售利潤y1與投入資金x的函數(shù)關(guān)系式.
(2)該商場計劃投入5萬元經(jīng)銷該種商品中,并全部投入A,B兩個品牌,問:怎樣分配這5萬元資金,才能使經(jīng)銷該種商品獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

同步練習冊答案