9.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F,且EF=$\frac{1}{2}$,則下列結(jié)論中正確的序號(hào)是①②③.
①AC⊥BE  ②EF∥平面ABCD ③三棱錐A-BEF的體積為定值
④△AEF的面積與△BEF的面積相等.

分析 由線面垂直證得兩線垂直判斷①;
由線面平行的定義證得線面平行判斷②;
由棱錐的高與底面積都是定值得出體積為定值判斷③;
由B到線段EF的距離與A到EF的距離不相等,可得△AEF的面積與△BEF的面積不相等.

解答 解:對(duì)于①,由題意及圖形知,AC⊥面DD1B1B,故可得出AC⊥BE,故①正確;
對(duì)于②,由正方體ABCD-A1B1C1D1的兩個(gè)底面平行,EF在其一面上,故EF與平面ABCD無(wú)公共點(diǎn),故有EF∥平面ABCD,故②正確;
對(duì)于③,由幾何體的性質(zhì)及圖形知,三角形BEF的面積是定值,A點(diǎn)到面DD1B1B,故可得三棱錐A-BEF的體積為定值,故③正確;
對(duì)于④,由圖形可以看出,B到線段EF的距離與A到EF的距離不相等,故△AEF的面積與△BEF的面積相等不正確,故④錯(cuò)誤.
∴正確命題的序號(hào)是①②③.
故答案為:①②③.

點(diǎn)評(píng) 本題考查棱柱的結(jié)構(gòu)特征,解答本題關(guān)鍵是正確理解正方體的幾何性質(zhì),且能根據(jù)這些幾何特征,對(duì)其中的點(diǎn)線面和位置關(guān)系作出正確判斷.熟練掌握線面平行的判斷方法,異面直線所成角的定義以及線面垂直的證明是解答本題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題錯(cuò)誤的是( 。
A.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個(gè)不為0則x2+y2≠0”.
B.若命題$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,則?p:?x∈R,x2-x+1>0.
C.△ABC中,sinA>sinB是A>B的充要條件.
D.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知$f(x)=2sinx•cos({x+\frac{π}{3}})+\frac{{\sqrt{3}}}{2}$.
(1)求$f({-\frac{π}{4}})$的值;
(2)若$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{2}$x2-(a+$\frac{1}{a}$)x+lnx,其中a>0.
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處切線的方程;
(Ⅱ)當(dāng)a≠1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若a∈(0,$\frac{1}{2}$),證明對(duì)任意x1,x2∈[$\frac{1}{2}$,1](x1≠x2),$\frac{|f({x}_{1})-f({x}_{2})|}{{x}_{1}^{2}-{x}_{2}^{2}}$<$\frac{1}{2}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)和橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1有相同的焦點(diǎn),且雙曲線的離心率是橢圓離心率的2倍,求雙曲線的方程.
(2)已知點(diǎn)P(6,8)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩焦點(diǎn),若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0.試求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如果橢圓$\frac{x^2}{81}+\frac{y^2}{25}=1$上一點(diǎn)M到此橢圓一個(gè)焦點(diǎn)F1的距離為10,N是MF1的中點(diǎn),O是坐標(biāo)原點(diǎn),則ON的長(zhǎng)為( 。
A.2B.4C.8D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ax2+bx-lnx(a,b∈R).
(Ⅰ)設(shè)b=2-a,求f(x)的零點(diǎn)的個(gè)數(shù);
(Ⅱ)設(shè)a>0,且對(duì)于任意x>0,f(x)≥f(1),試比較lna與-2b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=2+log${\;}_{\frac{1}{2}}$x.
(I)請(qǐng)畫(huà)出函數(shù)的草圖;
(Ⅱ)當(dāng)x=$\frac{1}{4}$時(shí),求f(x)的值;
(Ⅲ)當(dāng)-1<f(x)≤3時(shí),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若關(guān)于x的方程3-x=a2有負(fù)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(-∞,-1)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案