【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若對(duì)恒成立,求的取值范圍.
【答案】(1)詳見解析;(2).
【解析】
(1)求得函數(shù)的導(dǎo)函數(shù),分類討論即可求解函數(shù)的單調(diào)性,得到答案;
(2)由題意,即,當(dāng)時(shí),轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可得到結(jié)論。
(1)由題意,函數(shù),
可得,
當(dāng)時(shí),,單調(diào)減區(qū)間為,沒有增區(qū)間.
當(dāng)時(shí),當(dāng),;當(dāng)或,.
∴單調(diào)增區(qū)間為與,單調(diào)減區(qū)間.
當(dāng)時(shí),對(duì)成立,單調(diào)增區(qū)間為,沒有減區(qū)間.
當(dāng)時(shí),當(dāng),;當(dāng)或時(shí),.
∴的單調(diào)增區(qū)間為與,單調(diào)減區(qū)間為.
(2)由,即,
當(dāng)時(shí),,,
令,,則,
令,則,
當(dāng)時(shí),,是增函數(shù),,∴.
∴時(shí),是增函數(shù),最小值為,∴.
當(dāng)時(shí),顯然不成立,
當(dāng)時(shí),由最小值為知,不成立,
綜上的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點(diǎn)在x軸上的橢圓C:經(jīng)過點(diǎn),橢圓C的離心率為.,是橢圓的左、右焦點(diǎn),P為橢圓上任意點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M為的中點(diǎn)(O為坐標(biāo)原點(diǎn)),過M且平行于OP的直線l交橢圓C于A,B兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請(qǐng)求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝國(guó)慶節(jié),某中學(xué)團(tuán)委組織了“歌頌祖國(guó),愛我中華”知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名,將其成績(jī)(成績(jī)均為整數(shù))分成[40,50),[50,60),…,[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:
(1)求第四組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,點(diǎn)為中點(diǎn),底面為梯形,,,.
(1)證明:平面;
(2)若四棱錐的體積為4,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某幾何體由底面半徑和高均為5的圓柱與半徑為5的半球面對(duì)接而成,該封閉幾何體內(nèi)部放入一個(gè)小圓柱體,且圓柱體的上下底面均與外層圓柱的底面平行,則小圓柱體積的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為.我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用.已知,直線與橢圓有且只有一個(gè)公共點(diǎn).
(1)求的值
(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)分別作該橢圓的兩條切線,且與交于點(diǎn).當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)將甲、乙、丙、丁四個(gè)人安排到座位號(hào)分別是的四個(gè)座位上,他們分別有以下要求,
甲:我不坐座位號(hào)為和的座位;
乙:我不坐座位號(hào)為和的座位;
丙:我的要求和乙一樣;
丁:如果乙不坐座位號(hào)為的座位,我就不坐座位號(hào)為的座位.
那么坐在座位號(hào)為的座位上的是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓:,直線:,直線過點(diǎn),傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出直線與圓的交點(diǎn)極坐標(biāo)及直線的參數(shù)方程;
(2)設(shè)直線與圓交于,兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com