【題目】為慶祝國慶節(jié),某中學團委組織了歌頌祖國,愛我中華知識競賽,從參加考試的學生中抽出60名,將其成績(成績均為整數(shù))分成[40,50)[50,60),[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:

1)求第四組的頻率,并補全這個頻率分布直方圖;

2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點值為代表)

【答案】(1)第四組的頻率為0.3,直方圖見解析;(2)眾數(shù):75,中位數(shù):,均分為71

【解析】

(1)由各組的頻率和等于1求解第四組頻率,再補全直方圖即可

2)利用最高的矩形得眾數(shù);利用左右面積相等求中位數(shù);利用組中值估算抽樣學生的平均分

(1)因為各組的頻率和等于1,所以第四組的頻率為.

補全的頻率分布直方圖如圖所示.

(2)眾數(shù)為:,

設(shè)中位數(shù)為x,則

抽取學生的平均分約為45×0.155×0.1565×0.1575×0.385×0.2595×0.0571(),所以可估計這次考試的平均分為71分.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系,曲線的參數(shù)方程為為參數(shù),).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線

(1)說明是哪種曲線,并將的方程化為極坐標方程;

(2)已知的交于,兩點,且過極點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學習小組通過對某商場一種品牌服裝銷售情況的調(diào)查發(fā)現(xiàn):該服裝在過去的一個月內(nèi)(天計),日銷售量 ()與時間x ()的部分數(shù)據(jù)如下表所示,給出以下四種函數(shù)模型: ,② ,③ .請你根據(jù)上表中的數(shù)據(jù),從中選擇你認為最合適的一種函數(shù)來描述日銷售量()與時間x()的變化關(guān)系,請將你選擇的函數(shù)序號填寫在橫線上__________.(不需要求出具體解析式)

x ()

10

20

25

30

()

110

120

125

120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項是正數(shù)的數(shù)列的前n項和為

(1)若nN*,n≥2),

①求數(shù)列的通項公式;

②若對任意恒成立,求實數(shù)的取值范圍;

(2)數(shù)列是公比為qq>0, q1)的等比數(shù)列,且{an}的前n.若存在正整數(shù)k,對任意nN*,使得為定值求首項的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角梯形中, ,等腰梯形中, ,且平面平面

(1)求證: 平面

(2)若與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,內(nèi)角,,的對邊分別是,,,且滿足:.

)求角的大小;

(Ⅱ)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側(cè)棱,的中點,有下列結(jié)論正確的有:( )

A.∥平面B.平面∥平面

C.直線與直線所成角的大小為D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學的名同學準備拼車去旅游,其中大一、大二、大三、大四每個年級各兩名,分乘甲、乙兩輛汽車.每車限坐名同學(乘同一輛車的名同學不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的名同學中恰有名同學是來自于同一年級的乘坐方式共有_______種(有數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),現(xiàn)有一組數(shù)據(jù),將其繪制所得的莖葉圖如圖所示(其中莖為整數(shù)部分,葉為小數(shù)部分.例如:可記為,且上述數(shù)據(jù)的平均數(shù)為.)

(Ⅰ)求莖葉圖中數(shù)據(jù)的值;

(Ⅱ)現(xiàn)從莖葉圖中小于的數(shù)據(jù)中任取兩個數(shù)據(jù)分別替換的值,求恰有一個數(shù)據(jù)使得函數(shù)沒有零點的概率.

查看答案和解析>>

同步練習冊答案