如圖,已知橢圓的左焦點為,過點的直線交橢圓于兩點,線段的中點為,的中垂線與軸和軸分別交于兩點.
(1)若點的橫坐標為,求直線的斜率;
(2)記△的面積為,△(為原點)的面積為.試問:是否存在直線,使得?說明理由.
(1)(2)不存在直線,使得
【解析】
試題分析:(Ⅰ)解:依題意,直線的斜率存在,設其方程為.
將其代入,整理得 .
設,,所以 . 3分
故點的橫坐標為.依題意,得,
解得 . 5分
(Ⅱ)解:假設存在直線,使得 ,顯然直線不能與軸垂直.
由(Ⅰ)可得 . 6分
因為 ,所以 ,
解得 , 即 . 8分
因為 △∽△,所以 .
所以 , 10分
整理得 .
因為此方程無解,所以不存在直線,使得 . 12分
考點:直線與橢圓相交的位置關系
點評:直線與橢圓相交時常聯(lián)立方程借助于方程根與系數(shù)的關系整理化簡,此類題目計算量較大要求學生具有較高的數(shù)據(jù)處理能力
科目:高中數(shù)學 來源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044
如圖,在直角坐標系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足,()試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年內(nèi)蒙古赤峰市高三統(tǒng)考數(shù)學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com