精英家教網 > 高中數學 > 題目詳情
如圖所示,在三棱錐C—ABD中,E、F分別是AC和BD的中點,若CD=2AB=4,EF⊥AB,則EF與CD所成的角是          .
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

如圖,在正方體ABCD—A1B1C1D1中,E、F分別是A1B1、  CC的中點,則異面直線AE與BF所成角的余弦值為(    )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,側棱PA垂直于底面,E、F分別是AB、PC的中點.
(1)求證:CD⊥PD;
(2)求證:EF∥平面PAD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,四面體的三條棱兩兩垂直,,,為四面體外一點.給出下列命題.
①不存在點,使四面體有三個面是直角三角形
②不存在點,使四面體是正三棱錐
③存在點,使垂直并且相等
④存在無數個點,使點在四面體的外接球面上
其中真命題的序號是
A.①②
B.②③
C.③
D.③④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題14分)
如圖,在四棱錐V-ABCD中底面ABCD是正方形,側面VAD是正三角形,平面VAD

(1)證明:AB;         
(2)求面VAD與面VDB所成的二面角的余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.如圖5(1)是一個水平放置的正三棱柱ABC—A1B1C1,D是棱BC的中點,正三棱柱的正(主)視圖如圖5(2)。
(1)求正三棱柱ABC—A1B1C1的體積;
(2)證明:A1B//平面ADC1;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

本題(1)(2)(3)三個選答題,每小題5分,請考生任選1題作答,如果多做,則按所做的前1題計分.
(1)(選修4-1,幾何證明選講)如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點E,F(xiàn)分別為線段AB,CD的中點,則EF="          " .

(2)(選修4-4,坐標系與參數方程)在極坐標系(中,曲線的交點的極坐標為         .
(3)(選修4-1,不等式選講)
已知函數.若不等式,則實數的值為        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

.平面內條直線把平面分成部分;條直線把平面分成部分;條直線把平面分成部分。類比空間個平面把空間分成        部分;個平面把空間分成        部分;個平面把空間分成                     部分。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

( (本小題滿分12分)
在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.

(1)、求直線AP與平面BCC1B1所成的角的大。ńY果用反三角函數值表示);
(2)、求點P到平面ABD1的距離.

查看答案和解析>>

同步練習冊答案