【題目】下列函數(shù)f(x)中,滿足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是( )
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x
【答案】A
【解析】解:若“x1,x2∈(0,+∞)且x1≠x2,(x1﹣x2)[f(x1)﹣f(x2)]<0”,
則函數(shù)f(x)在(0,+∞)上為減函數(shù),
A中,f(x)= ﹣x在(0,+∞)上為減函數(shù),
B中,f(x)=x3在(0,+∞)上為增函數(shù),
C中,f(x)=lnx+ex在(0,+∞)上為增函數(shù),
D是,f(x)=﹣x2+2x在(0,1)上為增函數(shù),在(1,+∞)上為減函數(shù),
故選:A.
【考點精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關知識點,需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商定購,決定當一次定購量超過100件時,每多定購一件,訂購的全部零件的出廠單價就降低0.02元.根據(jù)市場調(diào)查,銷售商一次定購量不會超過500件.
(1)設一次定購量為x件,服裝的實際出廠總價為P元,寫出函數(shù)P=f(x)的表達式;
(2)當銷售商一次定購了450件服裝時,該服裝廠獲得的利潤是多少元?
(服裝廠售出一件服裝的利潤=實際出廠價格-成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:
天數(shù) | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/噸 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?
(Ⅱ)你認為應該用平均數(shù)和中位數(shù)中的哪一個數(shù)來描述該公司每天的用水量?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下命題正確的個數(shù)為( ) ①存在無數(shù)個α,β∈R,使得等式sin(α﹣β)=sinαcosβ+cosαsinβ成立;
②在△ABC中,“A> ”是“sinA> ”的充要條件;
③命題“在△ABC中,若sinA=sinB,則A=B”的逆否命題是真命題;
④命題“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠ ”.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ (a,b∈R)的圖象過點P(1,f(1)),且在點P處的切線方程為y=3x﹣8.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2-2x+4y-4=0,
(1)求圓C關于直線對稱的圓的方程;
(2)問是否存在斜率為1的直線l,使l被圓C截得弦AB,且以AB為直徑的圓經(jīng)過點?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設不等式組 ,表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一個點,則此點到坐標原點的距離大于2的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】寧德被譽為“中國大黃魚之鄉(xiāng)”,海域面積4.46萬平方公里,水產(chǎn)資源極為豐富.“寧德大黃魚”作為福建寧德地理標志產(chǎn)品,同時也是寧德最具區(qū)域特色的海水養(yǎng)殖品種,全國80%以上的大黃魚產(chǎn)自寧德,年產(chǎn)值超過60億元.現(xiàn)有一養(yǎng)殖戶為了解大黃魚的生長狀況,對其漁場中100萬尾魚的凈重(單位:克)進行抽樣檢測,將抽樣所得數(shù)據(jù)繪制成頻率分布直方圖如圖.其中產(chǎn)品凈重的范圍是,已知樣本中產(chǎn) 品凈重小于100克的有360尾.
(1)計算樣本中大黃魚的數(shù)量;
(2)假設樣本平均值不低于101.3克的漁場為級漁場,否則為級漁場.那么要使得該漁場為級漁場,則樣本中凈重在的大黃魚最多有幾尾?
(3)為提升養(yǎng)殖效果,該養(yǎng)殖戶進行低沉性配合飼料養(yǎng)殖,凈重小于98克的每4萬尾合用一個網(wǎng)箱,大于等于98克的每3萬尾合用一個網(wǎng)箱.根據(jù)(2)中所求的最大值,估計該養(yǎng)殖戶需要準備多少個網(wǎng)箱?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列 的前 項和為 , .
(Ⅰ)求 ,猜想 的通項公式,并用數(shù)學歸納法證明;
(Ⅱ)設 ,求證:數(shù)列 中任意三項均不成等比數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com