【題目】設(shè)函數(shù)

(Ⅰ)若,求函數(shù)有零點(diǎn)的概率;

(Ⅱ)若,求函數(shù)無零點(diǎn)的概率.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)問題等價(jià)于a2+b24,列舉可得基本事件共有15個(gè),事件A包含6個(gè)基本事件,可得概率;

(Ⅱ)作出圖形,由幾何概型的概率公式可得.

(Ⅰ)函數(shù)fx)=x2+2axb2+4有零點(diǎn)等價(jià)于方程x2+2axb2+40有實(shí)根,

可得△=(2a24(﹣b2+4)≥0,可得a2+b24

記事件A為函數(shù)fx)=x2+2axb2+4有零點(diǎn),

總的基本事件共有15個(gè):(0,﹣2,),(2,﹣1),(2,﹣2),(0,﹣1),

1,﹣1),(1,﹣2),(0,0),(0,1),(0,2),(1,0),(11),

1,2),(20),(2,1),(2,2),事件A包含9個(gè)基本事件,

PA)=

(Ⅱ)如圖,試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)椋ň匦螀^(qū)域)

函數(shù)gx)=fx+5無零點(diǎn)表示事件A,所構(gòu)成的區(qū)域?yàn)?/span>A{a,b|a2+b29a,b∈Ω}即圖中的陰影部分.

PA)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為菱形的四棱錐P-ABCD中,平面平面ABCD,為等腰直角三角形,,,點(diǎn)E,F分別為BC,PD的中點(diǎn),直線PC與平面AEF交于點(diǎn)Q.

(1)若平面平面,求證:.

(2)求直線AQ與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,討論的單調(diào)性;

(2)若,且對(duì)于函數(shù)的圖象上兩點(diǎn), ,存在,使得函數(shù)的圖象在處的切線.求證;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在單位正方體中,點(diǎn)在線段上運(yùn)動(dòng),給出以下三個(gè)命題:

①三棱錐的體積為定值; ②二面角的大小為定值;

③異面直線與直線所成的角為定值;

其中真命題有(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級(jí)),相對(duì)應(yīng)空氣質(zhì)量的七個(gè)類別,指數(shù)越大,說明污染的情況越嚴(yán)重,對(duì)人體危害越大.

指數(shù)

級(jí)別

類別

戶外活動(dòng)建議

優(yōu)

可正;顒(dòng)

輕微污染

易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動(dòng).

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng).

中度重污染

重污染

健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動(dòng).

現(xiàn)統(tǒng)計(jì)包頭市市區(qū)201610月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.

(Ⅰ)求這60天中屬輕度污染的天數(shù);

(Ⅱ)將頻率分布直方圖中的五組從左到右依次命名為第一組,第二組,,第五組.從第一組和第五組中的所有天數(shù)中抽出兩天,記它們的空氣質(zhì)量指數(shù)分別為,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時(shí)值金秋十月,正是秋高氣爽,陽(yáng)光明媚的美好時(shí)刻。復(fù)興中學(xué)一年一度的校運(yùn)會(huì)正在密鑼緊鼓地籌備中,同學(xué)們也在熱切地期盼著,都想為校運(yùn)會(huì)出一份力。小智同學(xué)則通過對(duì)學(xué)校有關(guān)部門的走訪,隨機(jī)地統(tǒng)計(jì)了過去許多年中的五個(gè)年份的校運(yùn)會(huì)“參與”人數(shù)及相關(guān)數(shù)據(jù),并進(jìn)行分析,希望能為運(yùn)動(dòng)會(huì)組織者科學(xué)地安排提供參考。

附:①過去許多年來學(xué)校的學(xué)生數(shù)基本上穩(wěn)定在3500人左右;②“參與”人數(shù)是指運(yùn)動(dòng)員和志愿者,其余同學(xué)均為“啦啦隊(duì)員”,不計(jì)入其中;③用數(shù)字1、2、3、45表示小智同學(xué)統(tǒng)計(jì)的五個(gè)年份的年份數(shù),今年的年份數(shù)是6

統(tǒng)計(jì)表(一)

年份數(shù)x

1

2

3

4

5

“參與”人數(shù)(y千人)

1.9

2.3

2.0

2.5

2.8

統(tǒng)計(jì)表(二)

高一(3)(4)班參加羽毛球比賽的情況:

男生

女生

小計(jì)

參加(人數(shù))

26

b

50

不參加(人數(shù))

c

20

小計(jì)

44

100

1)請(qǐng)你與小智同學(xué)一起根據(jù)統(tǒng)計(jì)表(一)所給的數(shù)據(jù),求出“參與”人數(shù)y關(guān)于年份數(shù)x的線性回歸方程,并預(yù)估今年的校運(yùn)會(huì)的“參與”人數(shù);

2)學(xué)校命名“參與”人數(shù)占總?cè)藬?shù)的百分之八十及以上的年份為“體育活躍年”.如果該校每屆校運(yùn)會(huì)的“參與”人數(shù)是互不影響的,且假定小智同學(xué)對(duì)今年校運(yùn)會(huì)的“參與”人數(shù)的預(yù)估是正確的,并以這6個(gè)年份中的“體育活躍年”所占的比例作為任意一年是“體育活躍年”的概率。現(xiàn)從過去許多年中隨機(jī)抽取9年來研究,記這9年中“體活躍年”的個(gè)數(shù)為隨機(jī)變量,試求隨機(jī)變量的分布列、期望和方差

3)根據(jù)統(tǒng)計(jì)表(二),請(qǐng)問:你能否有超過60%的把握認(rèn)為“羽毛球運(yùn)動(dòng)”與“性別”有關(guān)?

參考公式和數(shù)據(jù)一:,,

參考公式二:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),命題p:函數(shù)內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】畫糖是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù),常見于公園與旅游景點(diǎn).某師傅制作了一種新造型糖畫,為了進(jìn)行合理定價(jià)先進(jìn)性試銷售,其單價(jià)(元)與銷量(個(gè))相關(guān)數(shù)據(jù)如下表:

(1)已知銷量與單價(jià)具有線性相關(guān)關(guān)系,求關(guān)于的線性相關(guān)方程;

(2)若該新造型糖畫每個(gè)的成本為元,要使得進(jìn)入售賣時(shí)利潤(rùn)最大,請(qǐng)利用所求的線性相關(guān)關(guān)系確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))

參考公式:線性回歸方程中斜率和截距最小二乘法估計(jì)計(jì)算公式:

.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成, , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:

(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(2)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);

(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案