【題目】在單位正方體中,點(diǎn)在線段上運(yùn)動,給出以下三個命題:
①三棱錐的體積為定值; ②二面角的大小為定值;
③異面直線與直線所成的角為定值;
其中真命題有( )
A.0個B.1個C.2個D.3個
【答案】D
【解析】
①:以不同的三個頂點(diǎn)為底面,結(jié)合三棱錐的體積公式建立等式,再根據(jù)線面平行的性質(zhì)進(jìn)行判斷即可;
②:二面角的大小實(shí)際就是平面與平面,據(jù)此進(jìn)行判斷即可;
③:利用線面垂直的判定定理可以證明與平面垂直,據(jù)此進(jìn)行判斷即可.
①:因?yàn)?/span>平面,所以平面,因此點(diǎn)在線段上運(yùn)動時,它到平面的距離不變,而,所以三棱錐的體積為定值,故本命題是真命題;
②:因?yàn)槎娼?/span>的大小實(shí)際就是平面與平面,而平面與平面的二面角的大小不變,故本命題是真命題;
③:在正方體中,側(cè)面是正方形,故,因?yàn)?/span>平面,平面,因此,而,因此平面,而平面,因此與,因此異面直線與直線所成的角為定值,故本命題是真命題.
故選:D
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.
(1)證明:平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信搶紅包”自2015年以來異;鸨,在某個微信群某次進(jìn)行的搶紅包活動中,若所發(fā)紅包的總金額為10元,被隨機(jī)分配為1元,2.5元,3元,3.5元,共4份,供甲、乙等4人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于6元的概率是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,,平面PAB,,E為線段PB的中點(diǎn)
(1)證明:平面PDC;
(2)求直線DE與平面PDC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,是的中點(diǎn),平面,且,.
(1)求證:;
(2)求與平面所成角的正弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于不同的直線與不同的平面,有下列六個命題:
①若則;
②若則;
③若且則;
④若且則;
⑤若且則;
⑥若且則;
其中正確命題的序號是__________;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(Ⅰ)若,,求函數(shù)有零點(diǎn)的概率;
(Ⅱ)若,,求函數(shù)無零點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過其焦點(diǎn)的直線與拋物線相交于、兩點(diǎn),滿足.
(1)求拋物線的方程;
(2)已知點(diǎn)的坐標(biāo)為,記直線、的斜率分別為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為2的正方形,平面平面,且,是線段的中點(diǎn),過作直線,是直線上一動點(diǎn).
(1)求證:;
(2)若直線上存在唯一一點(diǎn)使得直線與平面垂直,求此時二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com