【題目】關(guān)于函數(shù),有以下三個(gè)結(jié)論:

①函數(shù)恒有兩個(gè)零點(diǎn),且兩個(gè)零點(diǎn)之積為

②函數(shù)的極值點(diǎn)不可能是

③函數(shù)必有最小值.

其中正確結(jié)論的個(gè)數(shù)有(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

【答案】D

【解析】

把函數(shù)的零點(diǎn)轉(zhuǎn)化為函數(shù)的零點(diǎn),即可判斷①;求得后代入,根據(jù)是否為0即可判斷②;設(shè)的兩個(gè)實(shí)數(shù)根為,結(jié)合①可得當(dāng)時(shí),,再證明即可判斷③;即可得解.

由題意函數(shù)的零點(diǎn)即為函數(shù)的零點(diǎn),

,則,所以方程必有兩個(gè)不等實(shí)根,,設(shè),

由韋達(dá)定理可得,故①正確;

當(dāng)時(shí),,故不可能是函數(shù)的極值點(diǎn),故②正確;

,

設(shè)的兩個(gè)實(shí)數(shù)根為,

則當(dāng),時(shí),,函數(shù)單調(diào)遞增,

當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以為函數(shù)極小值;

由①知,當(dāng)時(shí),函數(shù),所以當(dāng)時(shí),,

,所以,所以,

所以為函數(shù)的最小值,故③正確.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若上恒成立,求的取值范圍,并證明:對(duì)任意的,都有

2)設(shè).討論方程實(shí)數(shù)根的個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各進(jìn)行次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率,

(Ⅰ)記甲擊中目標(biāo)的次數(shù)為,求的概率分布及數(shù)學(xué)期望;

(Ⅱ)求甲恰好比乙多擊中目標(biāo)次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知條件P①是奇函數(shù);②值域?yàn)?/span>R;③函數(shù)圖象經(jīng)過第四象限。則下列函數(shù)中滿足條件Р的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,底面,,點(diǎn)E的中點(diǎn),點(diǎn)F在邊上移動(dòng).

(Ⅰ)若F中點(diǎn),求證:平面;

(Ⅱ)求證:

(Ⅲ)若二面角的余弦值等于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)

⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;

⑵若,函數(shù)上的最小值是2 ,求的值;

⑶在⑵的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別是,,,是其左右頂點(diǎn),點(diǎn)是橢圓上任一點(diǎn),且的周長(zhǎng)為6,若面積的最大值為.

(1)求橢圓的方程;

(2)若過點(diǎn)且斜率不為0的直線交橢圓兩個(gè)不同點(diǎn),證明:直線的交點(diǎn)在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)拋擲兩枚骰子,記事件為“朝上的2個(gè)數(shù)之和為偶數(shù)”,事件為“朝上的2個(gè)數(shù)均為偶數(shù)”,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線將矩形紙分為兩個(gè)直角梯形,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過程中,平面恒成立

D.在翻折的過程中,平面恒成立

查看答案和解析>>

同步練習(xí)冊(cè)答案