【題目】已知函數(shù),函數(shù)

⑴當(dāng)時,求函數(shù)的表達式;

⑵若,函數(shù)上的最小值是2 ,求的值;

⑶在⑵的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.

【答案】(1) (2) = - 2ln2 +ln3

【解析】

導(dǎo)數(shù)部分的高考題型主要表現(xiàn)在:利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),高考對這一知識點考查的要求是:理解極大值、極小值、最大值、最小值的概念,并會用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最大值和最小值。⑴∵,∴當(dāng)時,; 當(dāng)x<0時,∴當(dāng)x>0時,; ………………2

當(dāng)時,

∴當(dāng)時,函數(shù)………………………………………….4

⑵∵由⑴知當(dāng)時,,…………………………………………………..5

∴當(dāng)時, 當(dāng)且僅當(dāng)時取等號………………………7

∴函數(shù)上的最小值是,∴依題意得…….8

⑶由解得…………………………….10

∴直線與函數(shù)的圖象所圍成圖形的面積= - 2ln2 +ln3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,直線經(jīng)過點,直線經(jīng)過點,直線直線,且直線分別與橢圓相交于兩點和兩點.

()分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;

()若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;

()()的條件下,判斷四邊形能否為矩形,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,中點.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有以下三個結(jié)論:

①函數(shù)恒有兩個零點,且兩個零點之積為;

②函數(shù)的極值點不可能是;

③函數(shù)必有最小值.

其中正確結(jié)論的個數(shù)有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在點處切線的斜率為4,求實數(shù)的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,試討論的單調(diào)性;

2)若,實數(shù)為方程的兩不等實根,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個零點,求滿足條件的最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,兩兩垂直,,,分別是的中點.

1)證明:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案