已知函數(shù)
(1)求函數(shù)圖象的對稱中心;
(2)若,求在區(qū)間上的最大值
(3)若數(shù)列滿足,
求數(shù)列的通項(xiàng)公式
(1) (2) (3) 
 (1)
∴函數(shù)圖象的對稱中心為.………………………………3分
(2),對稱軸為,
,即時,;
,即時,;
,即時,
綜上,.…………………………………9分
(3),,
,∴,
,∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,
,∴.…………………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)有下列性質(zhì):“若
,使得”成立。
(1)利用這個性質(zhì)證明唯一;
(2)設(shè)A、B、C是函數(shù)圖象上三個不同的點(diǎn),試判斷△ABC的形狀,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)y=3sin(x-θ)的圖象F按向量(,3)平移得到圖象F′,若F′的一條對稱軸是直線x=,則θ的一個可能取值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)上是減函數(shù),在上是增函數(shù),函數(shù)上有三個零點(diǎn),且1是其中一個零點(diǎn).
(1)求的值;
(2)求的取值范圍;
(3)試探究直線與函數(shù)的圖像交點(diǎn)個數(shù)的情況,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

備選題:已知函數(shù)是定義在上的減函數(shù),并且滿足
①求的值;
②解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

佛山某公司生產(chǎn)陶瓷,根據(jù)歷年的情況可知,生產(chǎn)陶瓷每天的固定成本為14000元,每生產(chǎn)一件產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷售量與產(chǎn)量之間的關(guān)系式為
,每件產(chǎn)品的售價與產(chǎn)量之間的關(guān)系式為

(Ⅰ)寫出該陶瓷廠的日銷售利潤與產(chǎn)量之間的關(guān)系式;
(Ⅱ)若要使得日銷售利潤最大,每天該生產(chǎn)多少件產(chǎn)品,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公園舉辦雕塑展覽吸引著四方賓客.旅游人數(shù)與人均消費(fèi)(元)的關(guān)系如下:
(1)若游客客源充足,那么當(dāng)天接待游客多少人時,公園的旅游收入最多?
(2)若公園每天運(yùn)營成本為萬元(不含工作人員的工資),還要上繳占旅游收入20%的稅收,其余自負(fù)盈虧.目前公園的工作人員維持在40人.要使工作人員平均每人每天的工資不低于100元,并維持每天正常運(yùn)營(不負(fù)債),每天的游客人數(shù)應(yīng)控制在怎樣的合理范圍內(nèi)?
(注:旅游收入=旅游人數(shù)×人均消費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知方程的兩根為,若,求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則的值為(   )
A.B.1C.D.2

查看答案和解析>>

同步練習(xí)冊答案