某公園舉辦雕塑展覽吸引著四方賓客.旅游人數(shù)與人均消費(fèi)(元)的關(guān)系如下:
(1)若游客客源充足,那么當(dāng)天接待游客多少人時(shí),公園的旅游收入最多?
(2)若公園每天運(yùn)營(yíng)成本為萬(wàn)元(不含工作人員的工資),還要上繳占旅游收入20%的稅收,其余自負(fù)盈虧.目前公園的工作人員維持在40人.要使工作人員平均每人每天的工資不低于100元,并維持每天正常運(yùn)營(yíng)(不負(fù)債),每天的游客人數(shù)應(yīng)控制在怎樣的合理范圍內(nèi)?
(注:旅游收入=旅游人數(shù)×人均消費(fèi))
(Ⅰ) 當(dāng)天接待旅游人數(shù)為652人時(shí)旅游收入最多,收入為70416元  
(Ⅱ)每天的游客人數(shù)應(yīng)控制在520人到778人之間 
  (1)設(shè)當(dāng)天的旅游收入為L(zhǎng),那么L=xt,得
                 (4分)
當(dāng)時(shí),(元) (5分)
當(dāng)時(shí),
, ∴當(dāng)元時(shí),(元)                (6分)
此時(shí) (人)                                           (7分)
故當(dāng)天接待旅游人數(shù)為652人時(shí)旅游收入最多,收入為70416元.       (8分)
(2)要使工作人員平均每人每天的工資不低于100元,并維持每天正常運(yùn)營(yíng),即每天的旅游收入上繳稅收后不低于54000元,
顯然不滿(mǎn)足條件   (10分)
 (12分)
得   .                                           (14分)
因此,故每天的游客人數(shù)應(yīng)控制在520人到778人之間.     (16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)= 
(1)、求f(2)與f(),f(3)與f();
(2)、由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x) 與f()有什么關(guān)系?并證明你的結(jié)論;
(3)、求f(1)+f(2)+f(3)+的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)滿(mǎn)足,函數(shù)滿(mǎn)足 ,且對(duì)任意>0,且
(1)求證:;
(2)設(shè)的反函數(shù)為,當(dāng)時(shí),試比較的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù).
(1)若,試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)若對(duì),,試證明,使成立。
(3)是否存在,使同時(shí)滿(mǎn)足以下條件①對(duì),且;②對(duì),都有。若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(Ⅰ)已知函數(shù):求函數(shù)的最小值;
(Ⅱ)證明:;
(Ⅲ)定理:若 均為正數(shù),則有 成立(其中.請(qǐng)你構(gòu)造一個(gè)函數(shù),證明:
當(dāng)均為正數(shù)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共14分)
已知函數(shù),其中.
(Ⅰ)若b>2a,且的最大值為2,最小值為-4,試求函數(shù)f(x)的最小值;
(Ⅱ)若對(duì)任意實(shí)數(shù)x,不等式恒成立,且存在使得成立,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),
(1)求函數(shù)圖象的對(duì)稱(chēng)中心;
(2)若,求在區(qū)間上的最大值;
(3)若數(shù)列滿(mǎn)足,
求數(shù)列的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),設(shè),
(1)求的表達(dá)式,并猜想的表達(dá)式(直接寫(xiě)出猜想結(jié)果)
(2)若關(guān)于的函數(shù)在區(qū)間上的最小值為6,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分15分)某生產(chǎn)旅游紀(jì)念品的工廠,擬在2010年度將進(jìn)行系列促銷(xiāo)活動(dòng).經(jīng)市場(chǎng)調(diào)查和測(cè)算,該紀(jì)念品的年銷(xiāo)售量x萬(wàn)件與年促銷(xiāo)費(fèi)用t萬(wàn)元之間滿(mǎn)足3-xt+1成反比例.若不搞促銷(xiāo)活動(dòng),紀(jì)念品的年銷(xiāo)售量只有1萬(wàn)件.已知工廠2010年生產(chǎn)紀(jì)念品的固定投資為3萬(wàn)元,每生產(chǎn)1萬(wàn)件紀(jì)念品另外需要投資32萬(wàn)元.當(dāng)工廠把每件紀(jì)念品的售價(jià)定為:“年平均每件生產(chǎn)成本的150%”與“年平均每件所占促銷(xiāo)費(fèi)一半”之和時(shí),則當(dāng)年的產(chǎn)量和銷(xiāo)量相等.(利潤(rùn)=收入-生產(chǎn)成本-促銷(xiāo)費(fèi)用)(1)求出xt所滿(mǎn)足的關(guān)系式;(2)請(qǐng)把該工廠2010年的年利潤(rùn)y萬(wàn)元表示成促銷(xiāo)費(fèi)t萬(wàn)元的函數(shù);(3)試問(wèn):當(dāng)2010年的促銷(xiāo)費(fèi)投入多少萬(wàn)元時(shí),該工廠的年利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案