數(shù)列{an}的通項(xiàng),其前n項(xiàng)和為Sn,
(1)求Sn;
(2),求數(shù)列{bn}的前n項(xiàng)和Tn
【答案】分析:(1)利用二倍角公式可得,由于,所以求和時需要對n分類討論分類討論,求出和
(2)由(1)可得,利用錯位相減求出數(shù)列的和
解答:解:(1)由于
故S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k
=
=
,

(k∈N*
(2),
,

兩式相減得,

點(diǎn)評:(1)本題三角公式中的二倍角公式及三角的周期性為切入點(diǎn)考查數(shù)列的求和,由于三角的周期性,在求 的值時需要對n分類討論
(2)主要考查數(shù)列求和的錯位相減,此方法是數(shù)列求和部分高考考查的重點(diǎn)及熱點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=
56
,若以a1,a2,…,an為系數(shù)的二次方程an-1x2-anx+1=0(n∈N*,n≥2)都有根α,β,且滿足3α-αβ+3β=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=nan,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知an+1=2Sn +2(n∈N*)
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在an與an+1之間插人n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列,求數(shù)列{
1dn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1=3,設(shè)數(shù)列的前項(xiàng)和為Sn,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及Sn;
(II)求An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=an3n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{2an-1}是公比為3的等比數(shù)列,且a1=1,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}的前n項(xiàng)和Sn滿足Sn=2n2+2n-2,且cn=(an-
12
)•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案