3.cos230°-sin230°的值是( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

分析 利用二倍角余弦公式求得要求式子的值.

解答 解:利用二倍角余弦公式可得 cos230°-sin230°=$cos60°=\frac{1}{2}$,
故選:A.

點評 本題主要考查二倍角余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.限制作答題
容量為20的樣本的數(shù)據(jù),分組后的頻數(shù)如表.
組距[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
頻數(shù)234542
則樣本數(shù)據(jù)落在區(qū)間[10,40]上的頻率為0.45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若P=$\sqrt{7}$-1,Q=$\sqrt{11}$-$\sqrt{5}$,則P與Q的大小關(guān)系是P>Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若3位老師和3 個學(xué)生隨機(jī)站成一排照相,則任何兩個學(xué)生都互不相鄰的概率為( 。
A.$\frac{1}{20}$B.$\frac{1}{10}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=ex-ax2,g(x)=kx+1(a∈R,k∈R),e為自然對數(shù)的底數(shù).
(1)若a=1時,直線y=g(x)與曲線y=f′(x)相切(f′(x)為f(x)的導(dǎo)函數(shù)),求k的值;
(2)設(shè)h(x)=f(x)-g(x),若h(1)=0,且函數(shù)h(x)在(0,1)內(nèi)有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若cosθ=$\frac{1}{3}$,且270°<θ<360°,則cos$\frac{θ}{2}$等于( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.±$\frac{{\sqrt{6}}}{3}$D.-$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={1,2,3,4},B={2,4,7,8},C={1,3,4,5,9},則集合(A∪B)∩C的子集個數(shù)是( 。
A.3B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)z=i2+i的實部與虛部分別是( 。
A.-1,1B.1,-1C.1,1D.-1,-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知(2-x)6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,則a3=( 。
A.15B.-15C.20D.-20

查看答案和解析>>

同步練習(xí)冊答案