已知函數(shù)f(x)=alnx-ax-3(a∈R).
(I)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(x))處的切線的傾斜角為45°,問(wèn):m在什么范圍取值時(shí),對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[
m
2
+f(x)]在區(qū)間(t,3)上總存在極值?
(III)當(dāng)a=2時(shí),設(shè)函數(shù)h(x)=(p-2)x+
p+2
x
-3,若對(duì)任意的x∈[1,2],f(x)≥h(x)恒成立,求實(shí)數(shù)P的取值范圍.
分析:(I)當(dāng)a=1時(shí),f(x)=lnx-x-3,故可先求它的導(dǎo)函數(shù),令導(dǎo)數(shù)大于0解出其單調(diào)增區(qū)間,進(jìn)而得到減區(qū)間.
(II)函數(shù)y=f(x)的圖象在點(diǎn)(2,f(x))處的切線的傾斜角為45°,可求得此切線的斜率為1,即切點(diǎn)處的導(dǎo)數(shù)為1,由此求得參數(shù)a的值,再求出g(x)=x3+x2[
m
2
+f(x)]的解析式,利用導(dǎo)數(shù)研究函數(shù)在區(qū)間(t,3)上總存在極值即可.
(III)a=2時(shí),設(shè)函數(shù)h(x)=(p-2)x+
p+2
x
-3,若對(duì)任意的x∈[1,2],f(x)≥h(x)恒成立,即任意的x∈[1,2],f(x)-h(x)≥0恒成立,故求出函數(shù)f(x)-h(x)最小值,令其非負(fù)即可得到關(guān)于參數(shù)p的不等式,解之即可求得參數(shù)的范圍.
解答:解:f'(x)=
a
x
-a
(x>0)
(I)a=1時(shí),f'(x)=
1
x
-1
(x>0),令f'(x)>0解得0<x<1,所以f(x)在區(qū)間(0,1)遞增,
令f'(x)<0解得x>1,所以f(x)在區(qū)間(1,+∞)遞減,
(II)函數(shù)y=f(x)的圖象在點(diǎn)(2,f(x))處的切線的傾斜角為45°,
f'(2)=1,即
a
2
-a
=1,故a=-2,由此得f'(x)=
-2
x
+2

∴g(x)=x3+x2[
m
2
+f(x)]=x3+x2
m
2
+
-2
x
+2
)=x3+(
m
2
+2)x2-2x,∴g'(x)=3x2+(4+2m)x-2
∵對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[
m
2
+f(x)]在區(qū)間(t,3)上總存在極值
∴g'(x)=3x2+(4+2m)x-2在區(qū)間(t,3)上總有根,
∴g'(2)<0,g'(3)>0,
解得-
37
3
<m<
-9
(III)a=2時(shí),f(x)=2lnx-2x-3
令F(x)=f(x)-h(x)=2lnx-px-
p+2
x

F'(x)=
2
x
-p+
p+2
x2
=
2x-px2+p+2
x2
=
-p(x-
p+2
p
) (x+1)
x2

①p+2=0時(shí),F(xiàn)'(x)=
2x+2
x2
> 0
,∴F(x)在[1,2]遞增,所以F(1)=-2<0不成立,舍
1+
2
p
<-1,即-1<p<0時(shí),同①不成立,舍;
③-1<1+
2
p
≤1
,即p<-1時(shí),F(xiàn)(x)在[1,2]遞增,∴F(1)=-2p-2≥0,解得p≤-1,所以p<-1
④p=-1時(shí),F(xiàn)(x)在[1,2]遞增,成立
⑤p>0時(shí),無(wú)不成立
綜上,p≤-1
點(diǎn)評(píng):本題考點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)求函數(shù)的最值,本題涉及到了用導(dǎo)數(shù)研究函數(shù)的三大問(wèn)題,知識(shí)性綜合性較強(qiáng),在解題過(guò)程中要注意問(wèn)題的轉(zhuǎn)化及分類討論的技巧的使用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案