A. | $\frac{31}{32}$ | B. | $\frac{255}{64}$ | C. | $\frac{63}{64}$ | D. | $\frac{127}{128}$ |
分析 構(gòu)造當(dāng)n≥2時(shí),a1+2a2+4a3+…+2n-2an-1=2n-3,與原式相減,即可求得an=($\frac{1}{2}$)n-2,當(dāng)n=1時(shí),不滿足,故求得數(shù)列{an}的通項(xiàng)公式,求得T8-2的值.
解答 解:由a1+2a2+4a3+…+2n-1an=2n-1,
當(dāng)n≥2時(shí),a1+2a2+4a3+…+2n-2an-1=2n-3,
兩式相減得:2n-1an=2,
∴an=($\frac{1}{2}$)n-2,
當(dāng)n=1時(shí),a1=1,不滿足滿足,
∴an=$\left\{\begin{array}{l}{1}&{n=1}\\{(\frac{1}{2})^{n-2}}&{n≥2}\end{array}\right.$
∴T8=1+1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{64}$=2+$\frac{63}{64}$,
T8-2=$\frac{63}{64}$,
故答案為:C.
點(diǎn)評(píng) 本題考查數(shù)列的遞推公式,考查等比數(shù)列的前n項(xiàng)和公式,考查學(xué)生的觀察及計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變 | |
B. | 橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變 | |
C. | 縱坐標(biāo)伸長到原來的2倍,橫坐標(biāo)不變 | |
D. | 縱坐標(biāo)縮短到原來的$\frac{1}{2}$倍,橫坐標(biāo)不變 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A. | 可以預(yù)測(cè),當(dāng)x=9時(shí),y=4 | B. | 該回歸直線必過點(diǎn)(9,4) | ||
C. | m=4 | D. | m=5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com