分析 (Ⅰ)由等邊三角形的性質及已知可得AC=2CD,進而利用正弦定理即可得解$\frac{sin∠CAD}{sin∠D}$的值為$\frac{1}{2}$.
(Ⅱ)設CD=x,則可求BC=2x,BD=3x,利用余弦定理即可解得x的值,進而得解CD的值.
解答 (本題滿分為13分)
解:(Ⅰ)∵△ABC是等邊三角形,∴AC=BC,
又∵BC=2CD,∴AC=2CD,
∴在△ACD中,由正弦定理可得:$\frac{CD}{sin∠CAD}=\frac{AC}{sin∠D}$,
∴$\frac{sin∠CAD}{sin∠D}$=$\frac{CD}{AC}$=$\frac{1}{2}$.
(Ⅱ)設CD=x,則BC=2x,
∴BD=3x,
∵△ABD中,AD=$\sqrt{7}$,AB=2x,∠B=$\frac{π}{3}$,
∴由余弦定理可得:AD2=AB2+BD2-2AB•BD•cos∠B,
即:7=4x2+9x2-2x×3x,解得:x=1,
∴CD=1.
點評 本題主要考查了等邊三角形的性質,正弦定理,余弦定理在解三角形中的綜合應用,考查了轉化思想和數(shù)形結合思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | 0 | C. | -$\frac{3}{2}$ 或 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{3}{4}$ | C. | 0 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [5,e2) | B. | [5,7] | C. | {5,6,7} | D. | {5,6,7,8} |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com