【題目】把函數(shù)y=sinx的圖象上所有點的橫坐標都縮小到原來的一半,縱坐標保持不變,再把圖象向左平移 個單位,這時對應于這個圖象的解析式為( )
A.y=cos2x
B.y=﹣sin2x
C.
D.
【答案】A
【解析】解:函數(shù)y=sinx的圖象上所有點的橫坐標都縮小到原來的一半,縱坐標保持不變,可以得到函數(shù)y=sin2x的圖象
再把圖象向左平移 個單位,以得到函數(shù)y=sin2(x+ )=cos2x的圖象
故選A
【考點精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C為正方形,側(cè)面AA1B1B⊥側(cè)面BB1C1C,且AC=2,AB= ,∠A1AB=45°,E、F分別為AA1、CC1的中點.
(1)求證:AA1⊥平面BEF;
(2)求二面角B﹣EB1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣x+3. (Ⅰ)求f(x)在x=1處的切線方程;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的外接圓半徑為1,角A,B,C的對邊分別為a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA及a的值;
(2)若b2+c2=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M、N分別是EF、BC的中點,AB=2AF=2,∠CBA=60°.
(1)求證:AN⊥DM;
(2)求直線MN與平面ADEF所成的角的正切值;
(3)求三棱錐D﹣MAN的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )= .
(1)求ω和φ的值;
(2)在給定坐標系中作出函數(shù)f(x)在[0,π]上的圖象.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系 中,以原點 為極點,以 軸正半軸為極軸,建立極坐標系,曲線 的極坐標方程為 ,曲線 的參數(shù)方程為 .
(1)求曲線 的直角坐標方程與曲線 的普通方程;
(2)試判斷曲線 與 是否存在兩個交點?若存在,求出兩交點間的距離;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系 中,曲線 的參數(shù)方程為 ( 為參數(shù)),以原點 為極點,以 軸正半軸為極軸,建立極坐標系,曲線 的極坐標方程為 .
(1)求曲線 的普通方程與曲線 的直角坐標方程;
(2)試判斷曲線 與 是否存在兩個交點,若存在,求出兩交點間的距離;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】觀察研究某種植物的生長速度與溫度的關(guān)系,經(jīng)過統(tǒng)計,得到生長速度(單位:毫米/月)與月平均氣溫的對比表如下:
溫度 | -5 | 0 | 6 | 8 | 12 | 15 | 20 |
生長速度 | 2 | 4 | 5 | 6 | 7 | 8 | 10 |
(1)求生長速度關(guān)于溫度的線性回歸方程;(斜率和截距均保留為三位有效數(shù)字);
(2)利用(1)中的線性回歸方程,分析氣溫從至時生長速度的變化情況,如果某月的平均氣溫是時,預測這月大約能生長多少.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com