10.設(shè)f(x),g(x)是定義在[a,b]上的可導(dǎo)函數(shù)且f′(x)>g′(x),令F(x)=f(x)-g(x),則F(x)的最小值為F(a).

分析 求出F(x)的導(dǎo)數(shù),判斷出F(x)的單調(diào)性,求出F(x)的最小值即可.

解答 解:∵f′(x)>g′(x),
∴F′(x)=f′(x)-g′(x)>0,
∴F(x)在[a,b]遞增,
則F(x)的最小值F(a).
故答案為:F(a).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題、最值問題,考查的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在某比賽中,評(píng)委為一選手打出如下七個(gè)分?jǐn)?shù):97,91,87,91,94,95,94 去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為2.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列各點(diǎn)中,可作為函數(shù)y=tanx的對(duì)稱中心的是(  )
A.($\frac{π}{4}$,0)B.($\frac{π}{4}$,1)C.(-$\frac{π}{4}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知直線l1:2x+my-7=0與直線l2:mx+8y-14=0,若l1∥l2,則m( 。
A.4B.-4C.4或-4D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=2sinxcosx-$\sqrt{3}$cos2x.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈$[0,\frac{π}{2}]$時(shí),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求下列函數(shù)的單調(diào)增區(qū)間
(1)f(x)=ln(2x+3)+x2;
(2)f(x)=ex-ax.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和圓C的極坐標(biāo)方程;
(2)射線OM:θ=α(其中0<α<$\frac{π}{2}$)與圓C交于O,P兩點(diǎn),與直線l交于點(diǎn)M,直線ON:θ=α+$\frac{π}{2}$與圓C交于O,Q兩點(diǎn),與直線l交于點(diǎn)N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡甜品不喜歡甜品合計(jì)
南方學(xué)生402060
北方學(xué)生202040
合計(jì)6040100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取2人,求恰有1人喜歡甜品的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(b+d)(c+d)}$,
P(K2≥k)0.100.050.01
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,在小正方形邊長(zhǎng)為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為34π.

查看答案和解析>>

同步練習(xí)冊(cè)答案