【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系.直線1的極坐標方程為.
(Ⅰ)求C的普通方程和l的直角坐標方程;
(Ⅱ)設(shè)直線l與x軸和y軸的交點分別為A,B,點M在曲線C上,求△MAB面積的最大值.
【答案】(Ⅰ)C的普通方程x2+y2=16, l的直角坐標方程;(Ⅱ)
【解析】
(Ⅰ)利用同角三角函數(shù)的平方關(guān)系消去α可得C的普通方程,由代入極坐標方程可得l的直角坐標方程;
(Ⅱ)先求得A,B的坐標,得|AB|,設(shè)M(4cosα,4sinα),求點到直線距離,再求面積,利用三角函數(shù)求最值即可.
(Ⅰ)由(α為參數(shù))消去參數(shù)α可得曲線C的普通方程為:x2+y2=16.
由得,
因為,所以直線l的直角坐標方程為:.
(Ⅱ)由(Ⅰ)得 ,所以,
設(shè)M(4cosα,4sinα),則點M到直線AB的距離為,
當(dāng)時,dmax=6.
故△MAB的面積的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線,為過焦點的弦,過,分別作拋物線的切線,兩切線交于點,設(shè),,,則下列結(jié)論正確的是( ).
A.若的斜率為1,則
B.若的斜率為1,則
C.點恒在平行于軸的直線上
D.的值隨著斜率的變化而變化
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機抽取兩個球,求取出的球的編號之和不大于4的概率;
(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為2,左頂點與上頂點連線的斜率為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點,當(dāng)|MN|的值最大時,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為建立健全國家學(xué)生體質(zhì)健康監(jiān)測評價機制,激勵學(xué)生積極參加身體鍛煉,教育部印發(fā)《國家學(xué)生體質(zhì)健康標準(2014年修訂)》,要求各學(xué)校每學(xué)年開展覆蓋本校各年級學(xué)生的《標準》測試工作.為做好全省的迎檢工作,某市在高三年級開展了一次體質(zhì)健康模擬測試(健康指數(shù)滿分100分),并從中隨機抽取了200名學(xué)生的數(shù)據(jù),根據(jù)他們的健康指數(shù)繪制了如圖所示的頻率分布直方圖.
(1)估計這200名學(xué)生健康指數(shù)的平均數(shù)和樣本方差(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)由頻率分布直方圖知,該市學(xué)生的健康指數(shù)近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
①求;
②已知該市高三學(xué)生約有10000名,記體質(zhì)健康指數(shù)在區(qū)間的人數(shù)為,試求.
附:參考數(shù)據(jù),
若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線 ,點為的焦點,過點作斜率為1的直線與曲線交于,兩點,點,的橫坐標的倒數(shù)和為-1.
(1)求曲線的標準方程;
(2)過焦點作斜率為的直線交曲線于,兩點,分別以點,為切點作曲線的切線相交于點,過點作軸的垂線交軸于點,求三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的對角線與交于點,,,點,分別在,上,,交于點.將沿折到的位置,.
(I)證明:平面平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com