【題目】在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)),過點作斜率為的直線與圓交于,兩點.
(1)若圓心到直線的距離為,求的值;
(2)求線段中點的軌跡方程.
【答案】(1);(2).
【解析】
(1)先由圓的參數(shù)方程消去參數(shù)得到圓的普通方程,由題意設直線的方程,再根據(jù)點到直線的距離公式即可求出結(jié)果;
(2)由題意,設直線的參數(shù)方程為(為參數(shù)),代入圓的方程,結(jié)合韋達定理寫出點E坐標,進而可求出結(jié)果.
解:(1)由題知,圓的普通方程為,
即圓的圓心為,半徑.
依題可設過點的直線的方程為,即,
設圓心到直線的距離為,
則,
解得.
(2)設直線的參數(shù)方程為(為參數(shù)),,代入圓:,
得.
設,,對應的參數(shù)分別為,,,則,
所以,.
又點的坐標滿足,
所以點的軌跡的參數(shù)方程為,即 ,
化為普通方程為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,雙曲線:經(jīng)過點,其中一條近線的方程為,橢圓:與雙曲線有相同的焦點橢圓的左焦點,左頂點和上頂點分別為F,A,B,且點F到直線AB的距離為.
求雙曲線的方程;
求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.
(1)求圓的直角坐標方程及弦的長;
(2)動點在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前項和為,,公差為.
(1)若,求數(shù)列的通項公式;
(2)是否存在,使成立?若存在,試找出所有滿足條件的,的值,并求出數(shù)列的通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸x、y的交點為O,夾角為,與x軸、y軸正向同向的單位向量分別是,,由平面向量基本定理,對于平面內(nèi)的任一向量,存在唯一的有序?qū)崝?shù)對,使得,我們把叫做點P在斜坐標系xOy中的坐標(以下各點的坐標都指在斜坐標系xOy中的坐標)
(1)若,為單位向量,且與的夾角為120°,求點P的坐標;
(2)若,點P的坐標為,求向量與的夾角;
(3)若,直線l經(jīng)過點,求原點O到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中)
(1)求的單調(diào)減區(qū)間;
(2)當時,恒成立,求的取值范圍;
(3)設 只有兩個零點(),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系內(nèi)的動點P到直線的距離與到點的距離比為.
(1)求動點P所在曲線E的方程;
(2)設點Q為曲線E與軸正半軸的交點,過坐標原點O作直線,與曲線E相交于異于點的不同兩點,點C滿足,直線和分別與以C為圓心,為半徑的圓相交于點A和點B,求△QAC與△QBC的面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
(1)任意兩個復數(shù)都不能比較大小;(2)為實數(shù)為實數(shù);(3)虛軸上的點對應的復數(shù)都是純虛數(shù);(4)復數(shù)集與復平面內(nèi)的所有點所成的集合是一一對應的.
其中正確命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】住在同一城市的甲、乙兩位合伙人,約定在當天下午4:20-5:00間在某個咖啡館相見商談合作事宜,他們約好當其中一人先到后最多等對方10分鐘,若等不到則可以離去,則這兩人能相見的概率為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com