【題目】已知函數(shù)(其中為常數(shù),).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),是否存在實(shí)數(shù),使得當(dāng)時(shí),不等式恒成立?如果存在,求的取值范圍;如果不存在,請(qǐng)說明理由(其中是自然對(duì)數(shù)的底數(shù),).
【答案】(Ⅰ) 當(dāng)時(shí), 的增區(qū)間為和.
當(dāng)a>0時(shí),增區(qū)間為和,減區(qū)間為和
(Ⅱ) .
【解析】(Ⅰ)
①當(dāng)時(shí),恒成立,
于是的增區(qū)間為和.
②當(dāng)時(shí),由,得或.列表得
+ | 0 | - | - | 0 | + | |
↗ | 極大值 | ↘ | ↘ | 極小值 | ↗ |
于是增區(qū)間為和,
減區(qū)間為和
綜上可得, 當(dāng)時(shí), 的增區(qū)間為和.
當(dāng)時(shí),增區(qū)間為和,減區(qū)間為和
(Ⅱ)當(dāng)時(shí),對(duì)于任意時(shí),不等式恒成立等價(jià)于
因?yàn)?/span>,所以在上遞增.
所以
由(Ⅰ)知
①當(dāng),即時(shí),在上單調(diào)遞減,
故時(shí),成立.
②當(dāng),
當(dāng)時(shí),,
故時(shí),成立.
當(dāng)時(shí),
,得又,
故時(shí),成立.
③當(dāng),即時(shí),
,得與矛盾.
綜上所述,存在實(shí)數(shù)時(shí),對(duì)于任意時(shí),不等式恒成立.
(轉(zhuǎn)化為恒成立后,用分離參數(shù)法求解,比照給分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對(duì)變量t與y進(jìn)行相關(guān)性檢驗(yàn),得知t與y之間具有線性相關(guān)關(guān)系.
(1)求y關(guān)于t的線性回歸方程;
(2)預(yù)測(cè)該地區(qū)2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對(duì)角線的交點(diǎn),G是PB的中點(diǎn).
(1)根據(jù)三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解兩班學(xué)生寒假期間觀看《中國詩詞大會(huì)》的時(shí)長(zhǎng),分別從這兩個(gè)班中隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查,將他們觀看的時(shí)長(zhǎng)(單位:小時(shí))作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(1)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計(jì)哪個(gè)班的學(xué)生平均觀看的時(shí)間較長(zhǎng);
(2)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過21的數(shù)據(jù)記為,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線過定點(diǎn)
(1)若直線與圓相切,求直線的方程。
(2)若直線與圓相交于兩點(diǎn),且,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠今年1月、2月、3月生產(chǎn)某種產(chǎn)品的數(shù)量分別是1萬件、2萬件、1.3萬件,為了預(yù)測(cè)以后每個(gè)月的產(chǎn)量,以這三個(gè)月的產(chǎn)品數(shù)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份x的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)y=abx+c(其中a,b,c為常數(shù)),已知4月份該產(chǎn)品的產(chǎn)量為1.37萬件,請(qǐng)問用以上哪個(gè)函數(shù)作為模擬函數(shù)較好?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對(duì)數(shù)的底數(shù).
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線;
(2)若方程f(x)=x3+x2+m有3個(gè)不同的根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績(jī),其中有三個(gè)數(shù)據(jù)模糊.
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(yuǎn) (單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩 (單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a-1 | b | 65 |
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則( )
A. 2號(hào)學(xué)生進(jìn)入30秒跳繩決賽 B. 5號(hào)學(xué)生進(jìn)入30秒跳繩決賽
C. 8號(hào)學(xué)生進(jìn)入30秒跳繩決賽 D. 9號(hào)學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC,小李在山腳B處看索道AC,發(fā)現(xiàn)張角∠ABC=120°;從B處攀登400米到達(dá)D處,回頭看索道AC,發(fā)現(xiàn)張角∠ADC=150°;從D處再攀登800米方到達(dá)C處,則索道AC的長(zhǎng)為________米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com