【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對(duì)角線的交點(diǎn),GPB的中點(diǎn).

(1)根據(jù)三視圖,畫(huà)出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】試題分析:(1)根據(jù)三視圖,可得該幾何體為正四棱錐,正方形的邊長(zhǎng)為2,正四棱錐的高為,由此可得該幾何體的直觀圖.
(Ⅱ)①在直觀圖中,設(shè)正方形的中心為,利用三角形的中位線證明 .再由直線和平面平行的判定定理證得
②連接,則,取的中點(diǎn),連接 ,則 ,即可求此幾何體的側(cè)面積.

試題解析:(1)該幾何體的直觀圖如圖所示.

(2)如圖,①連接AC,BD交于點(diǎn)O,連接OG,

因?yàn)镚為PB的中點(diǎn),O為BD的中點(diǎn),所以O(shè)G∥PD,又OG平面AGC,PD平面AGC,所以PD∥平面AGC.

②連接PO,由三視圖,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,BO∩PO=O,所以AO⊥平面PBD,因?yàn)锳O平面AGC,所以平面PBD⊥平面AGC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊扇形鐵皮OAB,∠AOB=60°,OA=72cm,要剪下來(lái)一個(gè)扇環(huán)形ABCD,作圓臺(tái)容器的側(cè)面,并且在余下的扇形OCD內(nèi)能剪下一塊與其相切的圓形使它恰好作圓臺(tái)容器的下底面(大底面).試求:

(1)AD應(yīng)取多長(zhǎng)?

(2)容器的容積為多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求在區(qū)間上最大值和最小值;

(2)如果方程有三個(gè)不相等的實(shí)數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含個(gè)小正方形.

(1)求出

(2)利用合情推理的“歸納推理思想”歸納出的關(guān)系式,

(3)根據(jù)你得到的關(guān)系式求的表達(dá)式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.

注: 年份代碼1-7分別對(duì)應(yīng)年份2010-2016.

(1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(2)建立關(guān)于的回歸方程,預(yù)測(cè)年該企業(yè)污水凈化量;

(3)請(qǐng)用數(shù)據(jù)說(shuō)明回歸方程預(yù)報(bào)的效果.

附注: 參考數(shù)據(jù):;

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最。

二乘法估汁公式分別為;

反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品上市30天內(nèi)每件的銷售價(jià)格元與時(shí)間天函數(shù)關(guān)系是

該商品的日銷售量件與時(shí)間天函數(shù)關(guān)系是

.(1)求該商品上市第20天的日銷售金額;

(2)求這個(gè)商品的日銷售金額的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知△ABC中,∠ACB=90°,SA⊥平面ABC,ADSC,求證:AD⊥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中為常數(shù),).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),是否存在實(shí)數(shù),使得當(dāng)時(shí),不等式恒成立?如果存在,求的取值范圍;如果不存在,請(qǐng)說(shuō)明理由(其中是自然對(duì)數(shù)的底數(shù),).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】做投擲2個(gè)骰子試驗(yàn),用(x,y)表示點(diǎn)P的坐標(biāo),其中x表示第1個(gè)骰子出現(xiàn)的點(diǎn)數(shù),y表示第2個(gè)骰子出現(xiàn)的點(diǎn)數(shù).

(1)求點(diǎn)P在直線y=x上的概率.

(2)求點(diǎn)P不在直線y=x+1上的概率.

(3)求點(diǎn)P的坐標(biāo)(x,y)滿足16<x2+y2≤25的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案