20.已知數(shù)列{an}的通項公式為an=$\frac{n•{3}^{n}}{{3}^{n}-1}$(n≥1,n∈N*).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求證:對任意的自然數(shù)n∈N*,不等式a1•a2…an<2•n!成立.

分析 (Ⅰ)代值計算即可,
(Ⅱ)先利用分析法,要證明不等式成立,只需要證明等式(1-$\frac{1}{3}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{3}^{3}}$)…(1-$\frac{1}{{3}^{n}}$)≥1-($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)恒成立即可,用數(shù)學(xué)歸納法證明即可.

解答 解:(Ⅰ)∵an=$\frac{n•{3}^{n}}{{3}^{n}-1}$(n≥1),
∴a1=$\frac{1×3}{3-1}$=$\frac{3}{2}$,a2=$\frac{2×9}{9-1}$=$\frac{9}{4}$,a3=$\frac{3×27}{27-1}$=$\frac{81}{26}$,
(Ⅱ)∵an=$\frac{n•{3}^{n}}{{3}^{n}-1}$=$\frac{n}{1-\frac{1}{{3}^{n}}}$,可得a1•a2…an=$\frac{n!}{(1-\frac{1}{3})(1-\frac{1}{{3}^{2}})…(1-\frac{1}{{3}^{n}})}$,
因此欲證明不等式a1•a2…an<2•n!成立,只需要證明對一切非零自然數(shù)n,不等式(1-$\frac{1}{3}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{3}^{3}}$)…(1-$\frac{1}{{3}^{n}}$)>$\frac{1}{2}$恒成立即可,
顯然左端每個因式都為正數(shù),且因1-($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)=1-$\frac{1}{3}$($\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$)=1-$\frac{1}{2}$(1-$\frac{1}{{3}^{n}}$)>1-$\frac{1}{2}$=$\frac{1}{2}$,
故只需要證明對非零自然數(shù),不等式(1-$\frac{1}{3}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{3}^{3}}$)…(1-$\frac{1}{{3}^{n}}$)≥1-($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)恒成立即可,
下面用數(shù)學(xué)歸納法證明該不等式成立,
①顯然當(dāng)n=1時,不等式1-$\frac{1}{3}$≥1-$\frac{1}{3}$成立,
②假設(shè)當(dāng)n=k時不等式成立,即(1-$\frac{1}{3}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{3}^{3}}$)…(1-$\frac{1}{{3}^{k}}$)≥1-($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{k}}$)成立,
那么當(dāng)n=k+1時,(1-$\frac{1}{3}$)(1-$\frac{1}{{3}^{2}}$)…(1-$\frac{1}{{3}^{k}}$)(1-$\frac{1}{{3}^{k+1}}$)≥[1-($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{k}}$)](1-$\frac{1}{{3}^{k+1}}$),
即不等式右邊=1-($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{k}}$)-$\frac{1}{{3}^{k+1}}$+$\frac{1}{{3}^{k+1}}$($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{k}}$),
注意到$\frac{1}{{3}^{k+1}}$($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{k}}$)>0,
所以,(1-$\frac{1}{3}$)(1-$\frac{1}{{3}^{2}}$)…(1-$\frac{1}{{3}^{k}}$)(1-$\frac{1}{{3}^{k+1}}$)≥1-($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{k}}$+$\frac{1}{{3}^{k+1}}$),
這說明當(dāng)n=k+1時,不等式也成立,
由①②可知,不等式對一切非零自然數(shù)都成立,

點評 本題考查數(shù)列的通項公式,分析法,階乘公式,數(shù)學(xué)歸納法,考查了學(xué)生的邏輯推理能力和分析解決問題的能力,屬于難題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,A=2B,2a=3b,則cosB=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線l:kx+y-$\sqrt{2}$k=0與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行,且這兩條平行線間的距離為$\frac{4}{3}$,則雙曲線C的離心率為(  )
A.2B.2$\sqrt{2}$C.$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{log_2}x|,x>0\\-{x^2}-2x,x≤0\end{array}\right.$,關(guān)于x的方程f(x)=m(m∈R)有四個不同的實數(shù)解x1,x2,x3,x4則x1x2x3x4的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.底面是正方形的四棱錐中P-ABCD中,側(cè)面PAD⊥底面ABCD,且△PAD是等腰直角三角形,其中PA=PD,E,F(xiàn)分別為線段PC,DB的中點,問在線段AB上是否存在點G,使得二面角C-PD-G的余弦值為$\frac{{\sqrt{3}}}{3}$,若存在,請求出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,$\overline{z}$表示復(fù)數(shù)z的共軛復(fù)數(shù),若z=2-i,則z+i$\overline{z}$在復(fù)平面內(nèi)所對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線y=4x與曲線y=x2圍成的封閉區(qū)域面積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=a(x-$\frac{1}{x}$)-2lnx(a∈R).
(1)當(dāng)a=2時,求曲線f(x)在x=2處的切線方程;
(2)若a>$\frac{2e}{{e}^{2}+1}$,且m、n分別為f(x)的極大值和極小值,S=m-n,求證:S<$\frac{8}{{e}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若0<x<π,判斷x與sinx的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案