在等比數(shù)列{an}中,a1+an=34,a2an-1=64,且前n項和Sn=62,則項數(shù)n等于( )
A.4 B.5 C.6 D.7
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:解答題
設橢圓E:的焦點在x軸上.
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設F1、F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內的點,直線F2P交y軸于點Q,并且F1P⊥F1Q.證明:當a變化時,點P在某定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:解答題
受轎車在保修期內維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關.某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:
品牌 | 甲 |
|
| 乙 |
|
首次出現(xiàn)故障時間x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轎車數(shù)量(輛) | 2 | 3 | 45 | 5 | 45 |
每輛利潤(萬元) | 1 | 2 | 3 | 1.8 | 2.9 |
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內的概率;
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(3)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應生產(chǎn)哪種品牌的轎車?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題
若i(x+yi)=3+4i,x,y∈R,則復數(shù)x+yi的模是( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:填空題
(2013·淄博模擬)如圖,一個類似楊輝三角的數(shù)陣,請寫出第n(n≥2)行的第2個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題
(2013·課標全國卷Ⅱ)等比數(shù)列{an}的前n項和為Sn,已知S3=a2+10a1,a5=9,則a1=( )
A. B.- C. D.-
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:解答題
已知函數(shù)f(x)=cos,x∈R.
(1)求f的值;
(2)若cos θ=,θ∈,求f.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年吉林省延邊州高考復習質量檢測理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),。
(1)求不等式的解集;
(2)若不等式有解,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2014年吉林省延邊州高考復習質量檢測文科數(shù)學試卷(解析版) 題型:選擇題
表示不同直線,M表示平面,給出四個命題:①若∥M,∥M,則∥或 相交或異面;②若M,∥,則∥M;③⊥,⊥,則∥;④⊥M,⊥M,則∥,其中正確命題為
A.①④ B.②③ C.③④ D.①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com