17.若函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在區(qū)間($\frac{1}{3}$,4)上有極值點(diǎn),則實(shí)數(shù)a的取值范圍是(2,$\frac{17}{4}$).

分析 求導(dǎo)f′(x);得到f′(x)=0,($\frac{1}{3}$,4)有解即可.

解答 解:∵f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1,
∴f′(x)=x2-ax+1,
∴x2-ax+1=0有兩個(gè)解,
則△=a2-4>0;
故a>2或a<-2;
函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在區(qū)間($\frac{1}{3}$,4)上有極值點(diǎn)可化為x2-ax+1=0在區(qū)間($\frac{1}{3}$,4)有解,
①若x2-ax+1=0在區(qū)間($\frac{1}{3}$,4)有兩個(gè)解,
則滿足f′($\frac{1}{3}$)>0且f′(4)>0,
即$\frac{1}{9}$-$\frac{1}{3}$a+1>0且16-4a+1>0,
故a<$\frac{10}{3}$且a<$\frac{17}{4}$;
故2<a<$\frac{10}{3}$;
②若x2-ax+1=0在區(qū)間($\frac{1}{3}$,4)內(nèi)只有1個(gè)解,
則滿足f′($\frac{1}{3}$)f′(4)<0,
即($\frac{1}{9}$-$\frac{1}{3}$a+1)(16-4a+1)<0,
即($\frac{10}{9}$-$\frac{1}{3}$a)(17-4a)<0,
則(a-$\frac{10}{3}$)(a-$\frac{17}{4}$)<0,
則$\frac{10}{3}$<a<$\frac{17}{4}$;
當(dāng)a=$\frac{10}{3}$時(shí),f′(x)=x2-$\frac{10}{3}$x+1=$\frac{1}{3}$(x-3)(3x-1),
由f′(x)=0得x=3或x=$\frac{1}{3}$,
此時(shí)當(dāng)x=$\frac{1}{3}$時(shí),函數(shù)f(x)取得極值,
綜上所述,2<a<$\frac{17}{4}$.
故答案為:(2,$\frac{17}{4}$)

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的應(yīng)用,利用函數(shù)極值和導(dǎo)數(shù)的關(guān)系進(jìn)行求解是解決本題的關(guān)鍵.注意要進(jìn)行分類(lèi)討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若sinx=$\frac{3-2m}{2}$,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$],則m的取值范圍是( 。
A.1≤m≤2B.$\frac{1}{2}$≤m≤2C.-$\frac{1}{2}$≤m≤2D.-2≤m≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若復(fù)數(shù)$\frac{2a+2i}{1+i}$(α∈R)是純虛數(shù),則復(fù)數(shù)2a+2i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{m}{x}$+lnx+x,g(x)=x3-3x.
(I)若m=2,求f(x)的極值;
(Ⅱ)若對(duì)于任意的s∈[$\frac{1}{2}$,2],存在t∈[$\frac{1}{2}$,2]有f(s)≤g(t),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(普通中學(xué)做)已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,過(guò)右焦點(diǎn)F的直線l與C
相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為2.
(1)求橢圓C的方程;
(2)橢圓C上是否存在一點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求點(diǎn)P的坐標(biāo)與直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在y軸上,且長(zhǎng)軸的長(zhǎng)為4,離心率等于$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程;
(2)若橢圓C在第一象限的-點(diǎn)P的橫坐標(biāo)為1,過(guò)點(diǎn)P作傾斜角互補(bǔ)的兩條不同的直線PA,PB分別交橢圓C于另外兩點(diǎn)A,B.求證:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,過(guò)坐標(biāo)原點(diǎn)O的直線橢圓Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)于P,A兩點(diǎn),其中P在第一象限,B在橢圓Г上,直線AB與x軸交于點(diǎn)C.
(1)若橢圓Г的焦距為2$\sqrt{2}$,點(diǎn)P坐標(biāo)為($\sqrt{2}$,1),求橢圓Г的標(biāo)準(zhǔn)方程;
(2)求證:kBP•kBA=-$\frac{^{2}}{{a}^{2}}$;
(3)若BP⊥AP,PC⊥x軸,求橢圓Г的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=6,a1=4,則S5等于( 。
A.-2B.0C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知圓臺(tái)的上、下底面半徑分別是1、2,且側(cè)面面積等于兩底面積之和,則圓臺(tái)的體積等于$\frac{28π}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案