【題目】設(shè)直線及直線外一點(diǎn).
(1)寫出點(diǎn)到直線的距離公式;
(2)利用向量求證點(diǎn)到直線的距離公式.
【答案】詳情見解析
【解析】試題分析:(1)寫出平面直角坐標(biāo)系中,點(diǎn)到直線的距離公式即可;
(2)證明公式時應(yīng)討論B=0或A=0以及A≠0,且B≠0時,點(diǎn)到直線l的距離公式是什么,分別求出即可.
試題解析:
(1)平面直角坐標(biāo)系中,點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離為
;
(2)證明:設(shè)PQ垂直直線l于Q,
當(dāng)B=0時,直線l為:x=CA,所以,滿足公式;
當(dāng)A=0時,直線l為:y=CB,所以,滿足公式;
當(dāng)A≠0,且B≠0時,直線l與x軸、y軸都相交,
過點(diǎn)P作x軸的平行線,交l與點(diǎn)R(x1,y0),作y軸的平行線交l于點(diǎn)S(x0,y2),
如圖所示:
把點(diǎn)R的坐標(biāo)代入l的方程,求出x1=By0+CA,
把點(diǎn)S的坐標(biāo)代入l的方程,求出y2=Ax0+CB,
所以|PR|=|x0x1|=|Ax0+By0+CA|,
|PS|=|y0y2|=|Ax0+By0+CB|,
|RS|= ;
由三角形的面積公式,得d|RS|=|PR||PS|,
所以d=|PQ|= ;
綜上,點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子公司開發(fā)一種智能手機(jī)的配件,每個配件的成本是15元,銷售價是20元,月平均銷售件,通過改進(jìn)工藝,每個配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場分析的結(jié)果表明,如果每個配件的銷售價提高的百分率為,那么月平均銷售量減少的百分率為,記改進(jìn)工藝后電子公司銷售該配件的月平均利潤是(元).
(1)寫出與的函數(shù)關(guān)系式;
(2)改進(jìn)工藝后,試確定該智能手機(jī)配件的售價,使電子公司銷售該配件的月平均利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左頂點(diǎn)為,右焦點(diǎn)為, 為原點(diǎn), , 是軸上的兩個動點(diǎn),且,直線和分別與橢圓交于, 兩點(diǎn).
(Ⅰ)求的面積的最小值;
(Ⅱ)證明: , , 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一片成熟森林的總面積為 (近期內(nèi)不再種植),計劃每年砍伐一些樹,且每年砍伐面積的百分比相等,當(dāng)砍伐到面積的一半時,所用時間是10年,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的,已知到今年為止,森林剩余面積為原來的.
(1)求每年砍伐面積的百分比;
(2)到今年為止,該森林已砍伐了多少年?
(3)今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在處的極值為0.
(1)求常數(shù)的值;
(2)求的單調(diào)區(qū)間;
(3)方程在區(qū)間上有三個不同的實根時,求實數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果從不包括大小王的52張撲克牌中隨機(jī)抽取一張,那么取到紅心(事件A)的概率是,取到方塊(事件B)的概率是,問:
(1)取到紅色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三個臭皮匠頂上一個諸葛亮,能頂?shù)蒙蠁?在一次有關(guān)“三國演義”的知識競賽中,三個臭皮匠A、B、C能答對題目的概率分別為P(A)=,P(B)=,P(C)=,諸葛亮D能答對題目的概率為P(D)=,如果將三個臭皮匠A、B、C組成一組與諸葛亮D比賽,答對題目多者為勝方,問哪方勝?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形, 底面, ,過點(diǎn)的平面與棱, , 分別交于點(diǎn), , (, , 三點(diǎn)均不在棱的端點(diǎn)處).
(Ⅰ)求證:平面平面;
(Ⅱ)若平面,求的值;
(Ⅲ)直線是否可能與平面平行?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)P是圓上的動點(diǎn),點(diǎn)D是P在x軸上的投影,M為線段PD上一點(diǎn),且,
(1)當(dāng)P在圓上運(yùn)動時,求點(diǎn)M的軌跡C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被軌跡C所截線段的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com