【題目】如圖,在四棱錐中,底面為正方形, 底面, ,過點(diǎn)的平面與棱, , 分別交于點(diǎn), , (, , 三點(diǎn)均不在棱的端點(diǎn)處).
(Ⅰ)求證:平面平面;
(Ⅱ)若平面,求的值;
(Ⅲ)直線是否可能與平面平行?證明你的結(jié)論.
【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)先用線面垂直的判定證明平面,可得平面平面.
(Ⅱ)由 且,得是的中點(diǎn),所以 .
(Ⅲ)反證法證明,假設(shè)平面,結(jié)合條件可得,平面平面,這顯然矛盾!所以假設(shè)不成立,即與平面不可能平行.
試題解析:
:
(Ⅰ)因?yàn)?/span>平面,所以.因?yàn)?/span>為正方形,所以,所以平面.所以平面平面.
(Ⅱ)連接.因?yàn)?平面,所以 .
又因?yàn)?,所以 是的中點(diǎn). 所以 .
(Ⅲ)與平面不可能平行.
證明如下:假設(shè)平面,因?yàn)?, 平面.所以 平面.而 平面,所以 平面平面,這顯然矛盾! 所以假設(shè)不成立,即與平面不可能平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)().
(1)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)的極值點(diǎn);
(3)令, ,設(shè), , 是曲線上相異三點(diǎn),其中.求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線及直線外一點(diǎn).
(1)寫出點(diǎn)到直線的距離公式;
(2)利用向量求證點(diǎn)到直線的距離公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)從參加高一年級(jí)上學(xué)期期末考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)估計(jì)這次考試的及格率(60分及以上為及格).
(2)從成績(jī)是70分以上(包括70分)的學(xué)生中選一人,求選到第一名學(xué)生的概率(第一名學(xué)生只一人).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),設(shè)為曲線在點(diǎn)處的切線,其中.
(Ⅰ)求直線的方程(用表示);
(Ⅱ)求直線在軸上的截距的取值范圍;
(Ⅲ)設(shè)直線分別與曲線和射線()交于, 兩點(diǎn),求的最小值及此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計(jì)表:
(1)令,利用給出的參考數(shù)據(jù)求出關(guān)于的回歸方程.(,精確到0.1)
參考數(shù)據(jù):,,
其中,
(2)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量不高于20微克時(shí)對(duì)人體無害,為了放心食用該蔬菜,請(qǐng)估計(jì)至少需用用多少千克的清水清洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù))
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為橢圓的參數(shù)方程為在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立的極坐標(biāo)系中,點(diǎn)的坐標(biāo)為.
(1)將點(diǎn)的坐標(biāo)化為直角坐標(biāo)系下的坐標(biāo),橢圓的參數(shù)方程化為普通方程;
(2)直線與橢圓交于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”國(guó)際合作高峰論壇圓滿落幕了,相關(guān)話題在網(wǎng)絡(luò)上引起了網(wǎng)友們的高度關(guān)注,為此,21財(cái)經(jīng)APP聯(lián)合UC推出“一帶一路”大數(shù)據(jù)微報(bào)告,在全國(guó)抽取的70千萬網(wǎng)民中(其中為高學(xué)歷)有20千萬人對(duì)此關(guān)注(其中為高學(xué)歷).
(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表;
(2)根據(jù)列聯(lián)表,用獨(dú)立性檢驗(yàn)的方法分析,能否有的把握認(rèn)為“一帶一路”的關(guān)注度與學(xué)歷有關(guān)系?
高學(xué)歷(千萬人) | 不是高學(xué)歷(千萬人) | 合計(jì) | |
關(guān)注 | |||
不關(guān)注 | |||
合計(jì) |
參考公式: 統(tǒng)計(jì)量的表達(dá)式是,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人做定點(diǎn)投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為,甲投籃3次均未命中的概率為,甲、乙每次投籃是否命中相互之間沒有影響.
(1)若甲投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com