【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2有兩個零點(diǎn).
(1)求a的取值范圍;
(2)設(shè)x1 , x2是f(x)的兩個零點(diǎn),證明:x1+x2<2.

【答案】
(1)

解:∵函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2,

∴f′(x)=(x﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),

①若a=0,那么f(x)=0(x﹣2)ex=0x=2,

函數(shù)f(x)只有唯一的零點(diǎn)2,不合題意;

②若a>0,那么ex+2a>0恒成立,

當(dāng)x<1時,f′(x)<0,此時函數(shù)為減函數(shù);

當(dāng)x>1時,f′(x)>0,此時函數(shù)為增函數(shù);

此時當(dāng)x=1時,函數(shù)f(x)取極小值﹣e,

由f(2)=a>0,可得:函數(shù)f(x)在x>1存在一個零點(diǎn);

當(dāng)x<1時,ex<e,x﹣2<﹣1<0,

∴f(x)=(x﹣2)ex+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,

令a(x﹣1)2+e(x﹣1)﹣e=0的兩根為t1,t2,且t1<t2,

則當(dāng)x<t1,或x>t2時,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,

故函數(shù)f(x)在x<1存在一個零點(diǎn);

即函數(shù)f(x)在R是存在兩個零點(diǎn),滿足題意;

③若﹣ <a<0,則ln(﹣2a)<lne=1,

當(dāng)x<ln(﹣2a)時,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,

ex+2a<eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)單調(diào)遞增,

當(dāng)ln(﹣2a)<x<1時,x﹣1<0,ex+2a>eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)單調(diào)遞減,

當(dāng)x>1時,x﹣1>0,ex+2a>eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)單調(diào)遞增,

故當(dāng)x=ln(﹣2a)時,函數(shù)取極大值,

由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣1]2+1}<0得:

函數(shù)f(x)在R上至多存在一個零點(diǎn),不合題意;

④若a=﹣ ,則ln(﹣2a)=1,

當(dāng)x<1=ln(﹣2a)時,x﹣1<0,ex+2a<eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)單調(diào)遞增,

當(dāng)x>1時,x﹣1>0,ex+2a>eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)單調(diào)遞增,

故函數(shù)f(x)在R上單調(diào)遞增,

函數(shù)f(x)在R上至多存在一個零點(diǎn),不合題意;

⑤若a<﹣ ,則ln(﹣2a)>lne=1,

當(dāng)x<1時,x﹣1<0,ex+2a<eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)單調(diào)遞增,

當(dāng)1<x<ln(﹣2a)時,x﹣1>0,ex+2a<eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)單調(diào)遞減,

當(dāng)x>ln(﹣2a)時,x﹣1>0,ex+2a>eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)單調(diào)遞增,

故當(dāng)x=1時,函數(shù)取極大值,

由f(1)=﹣e<0得:

函數(shù)f(x)在R上至多存在一個零點(diǎn),不合題意;

綜上所述,a的取值范圍為(0,+∞)


(2)

證明:∵x1,x2是f(x)的兩個零點(diǎn),

∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,

∴﹣a= = ,

令g(x)= ,則g(x1)=g(x2)=﹣a,

∵g′(x)=

∴當(dāng)x<1時,g′(x)<0,g(x)單調(diào)遞減;

當(dāng)x>1時,g′(x)>0,g(x)單調(diào)遞增;

設(shè)m>0,則g(1+m)﹣g(1﹣m)= = ,

設(shè)h(m)= ,m>0,

則h′(m)= >0恒成立,

即h(m)在(0,+∞)上為增函數(shù),

h(m)>h(0)=0恒成立,

即g(1+m)>g(1﹣m)恒成立,

令m=1﹣x1>0,

則g(1+1﹣x1)>g(1﹣1+x1g(2﹣x1)>g(x1)=g(x22﹣x1>x2,

即x1+x2<2.


【解析】利用導(dǎo)數(shù)研究函數(shù)的極值;函數(shù)的零點(diǎn).(1)由函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2可得:f′(x)=(x﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),對a進(jìn)行分類討論,綜合討論結(jié)果,可得答案.(2)設(shè)x1 , x2是f(x)的兩個零點(diǎn),則﹣a= = ,令g(x)= ,則g(x1)=g(x2)=﹣a,分析g(x)的單調(diào)性,令m>0,則g(1+m)﹣g(1﹣m)= ,
設(shè)h(m)= ,m>0,利用導(dǎo)數(shù)法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得結(jié)論.本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的極值,函數(shù)的零點(diǎn),分類討論思想,難度較大.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的極值與導(dǎo)數(shù)和函數(shù)的零點(diǎn),掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值;函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過點(diǎn)P(3,2),且在兩坐標(biāo)軸上的截距相等的直線方程為(寫出一般式)___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi)從點(diǎn)P1(0,0)作x軸的垂線交曲線y=ex于點(diǎn)Q1(0,1),曲線在Q1點(diǎn)處的切線與x軸交于點(diǎn)P2.再從P2x軸的垂線交曲線于點(diǎn)Q2,依次重復(fù)上述過程得到一系列點(diǎn):P1Q1;P2,Q2;…;Pn,Qn,記點(diǎn)的坐標(biāo)為(,0)(k=1,2,…,n).

(1)試求的關(guān)系(k=2,…,n);

(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點(diǎn)的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E與二面角C﹣BE﹣F都是60°.

(1)證明平面ABEF⊥平面EFDC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買2臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200元.在機(jī)器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:
以這100臺機(jī)器更換的易損零件數(shù)的頻率代替1臺機(jī)器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購買2臺機(jī)器的同時購買的易損零件數(shù).

(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,確定n的最小值;
(3)以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角對的邊分別為,已知.

)若,求的取值范圍;

)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建坐標(biāo)系,已知曲線,已知過點(diǎn)的直線的參數(shù)方程為:t為參數(shù)),直線與曲線C分別交于M,N

)寫出曲線C和直線的普通方程;

)若成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求多項(xiàng)式值的一個實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為(  )
A.35
B.20
C.18
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長均相等的正四棱錐P-ABCD中,O為底面正方形的重心,M,N分別為側(cè)棱PA,PB的中點(diǎn),有下列結(jié)論:

PC∥平面OMN;

②平面PCD∥平面OMN;

OMPA

④直線PD與直線MN所成角的大小為90°.

其中正確結(jié)論的序號是______.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案