【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為(  )
A.35
B.20
C.18
D.9

【答案】C
【解析】解:∵輸入的x=2,n=3,
故v=1,i=2,滿足進(jìn)行循環(huán)的條件,v=4,i=1,
滿足進(jìn)行循環(huán)的條件,v=9,i=0,
滿足進(jìn)行循環(huán)的條件,v=18,i=﹣1
不滿足進(jìn)行循環(huán)的條件,
故輸出的v值為:
故選:C
根據(jù)已知的程序框圖可得,該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量v的值,模擬程序的運(yùn)行過(guò)程,可得答案;本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)次數(shù)不多,或有規(guī)律可循時(shí),可采用模擬程序法進(jìn)行解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中a為常數(shù)).

(1)當(dāng)a=1時(shí),求fx)在上的值域;

(2)若當(dāng)x∈[0,1]時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍;

(3)設(shè),是否存在正數(shù)a,使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù)m,n,p,都存在以fgm)),fgn)),fgp))為邊長(zhǎng)的三角形?若存在,試求出這樣的a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2有兩個(gè)零點(diǎn).
(1)求a的取值范圍;
(2)設(shè)x1 , x2是f(x)的兩個(gè)零點(diǎn),證明:x1+x2<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設(shè)點(diǎn)E為AB的中點(diǎn),在棱PB上是否存在點(diǎn)F,使得PA∥平面CEF?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)設(shè)a=b=4,若函數(shù)f(x)有三個(gè)不同零點(diǎn),求c的取值范圍;
(3)求證:a2﹣3b>0是f(x)有三個(gè)不同零點(diǎn)的必要而不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的序號(hào)是__________________.(寫出所有正確的序號(hào))

正切函數(shù)在定義域內(nèi)是增函數(shù);

已知函數(shù)的最小正周期為,的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象關(guān)于軸對(duì)稱,的一個(gè)值可以是;

,三點(diǎn)共線;④函數(shù)的最小值為;

函數(shù)上是增函數(shù),的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點(diǎn)求證:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=log4(22x+1)+mx的圖象經(jīng)過(guò)點(diǎn) .

(Ⅰ)求m值并判斷的奇偶性;

(Ⅱ)設(shè)gx)=log4(2x+x+afx),若關(guān)于x的方程fx)=gx)在x∈[-2,2]上有且只有一個(gè)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩直線,當(dāng)a在區(qū)間內(nèi)變化時(shí),求直線與兩坐標(biāo)軸圍成的四邊形面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案