2.已知定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,若關(guān)于x的函數(shù)F(x)=f(x)-a有5個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-1,1).

分析 作函數(shù)f(x)與y=a的圖象,從而可得函數(shù)F(x)=f(x)-a有5個(gè)零點(diǎn),從而結(jié)合圖象解得.

解答 解:作函數(shù)f(x)與y=a的圖象如下,
,
結(jié)合圖象可知,
函數(shù)f(x)與y=a的圖象共有5個(gè)交點(diǎn),
故函數(shù)F(x)=f(x)-a有5個(gè)零點(diǎn),
故a的取值范圍為(-1,1)
故答案為:(-1,1)

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn)與函數(shù)的圖象的關(guān)系應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=xlnx.
(1)求f(x)單調(diào)區(qū)間以及 f(x)最小值.
(2)設(shè)F(x)=ax2+f′(x)(a∈[0,+∞)),討論函數(shù)F(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在(3-$\sqrt{x}$)n(n≥2且n∈N)展開式中x的系數(shù)為an,則$\frac{3}{{a}_{2}}$+$\frac{{3}^{2}}{{a}_{3}}$+$\frac{{3}^{3}}{{a}_{4}}$+…+$\frac{{3}^{2015}}{{a}_{2016}}$=( 。
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2015}{672}$D.$\frac{2015}{336}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足$\left|\overrightarrow{a}+\overrightarrow\right|=2\sqrt{3}$、$\left|\overrightarrow{a}-\overrightarrow\right|=2$,則$\overrightarrow{a}•\overrightarrow$=( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}1-|{x-1}|,x<2\\ \frac{1}{2}f(x-2),x≥2\end{array}\right.$,則方程xf(x)-1=0根的個(gè)數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow m=({sinx,1}),\overrightarrow{\;n}=({\sqrt{3}Acosx,\frac{A}{2}cos2x})({A>0})$,函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$的最大值為6.
(1)求A的值及函數(shù)圖象的對(duì)稱軸方程和對(duì)稱中心坐標(biāo);
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位,再將所得的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在$[{0,\frac{5π}{24}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖所示,三棱柱ABC-A1B1C1中,AA1⊥BC,A1B⊥BB1,若AB=2,AC=$\sqrt{3}$,BC=$\sqrt{7}$,則下列結(jié)論正確的是( 。
A.:當(dāng)AA1=$\frac{\sqrt{42}}{7}$時(shí),三棱柱ABC-A1B1C1體積取得最大值,最大值為$\frac{3\sqrt{7}}{7}$
B.:當(dāng)AA1=$\frac{6}{7}$時(shí),三棱柱ABC-A1B1C1體積取得最大值,最大值為$\frac{3\sqrt{7}}{7}$
C.:當(dāng)AA1=$\frac{\sqrt{42}}{7}$時(shí),三棱柱ABC-A1B1C1體積取得最大值,最大值為$\frac{6}{7}$$\sqrt{7}$
D.:當(dāng)AA1=$\frac{6}{7}$時(shí),三棱柱ABC-A1B1C1體積取得最大值,最大值為$\frac{6}{7}$$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\sqrt{2}sin(2x+\frac{π}{4})+2$
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知cosα=-$\frac{4}{5}$,并且α是第二象限的角
(1)求sinα和tanα的值;
(2)求$\frac{2sinα+3cosα}{cosα-sinα}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案