已知點P圓C:(x-1)2+y2=2內(nèi)的任意一點,直線l:x-y+b=0
(1)求點P在第一象限的概率;
(2)若b∈(-3,3),求直線l與圓C沒有公共點的概率.
考點:幾何概型
專題:概率與統(tǒng)計
分析:本題考查幾何概型,解題的關(guān)鍵(1)是求解圓在第一象限的部分的面積,(2)直線l與圓C沒有公共點的b的范圍.然后由公式解之.
解答: 解:(1)如圖:圓C:(x-1)2+y2=2,

由幾何概型的概率公式得,點P在第一象限的概率即圓在第一象限部分的面積與圓面積的比值:
1
2
×1×1+
3
8
×4π
=
1+3π

所以點P在第一象限的概率為
1+3π
;
(2)直線l與圓C沒有公共點,則圓心(1,0)到直線l:x-y+b=0的距離為
|1+b|
2
2
,解得b>1或者b<-3,又b∈(-3,3),所以在此范圍內(nèi)直線l與圓C沒有公共點的b∈(1,3),
所以由幾何概型的概率公式得,b∈(-3,3),直線l與圓C沒有公共點的概率
2
6
=
1
3
點評:本題考查了幾何概型概率的求法,關(guān)鍵是明確滿足條件的區(qū)域,是用長度還是面積或者體積表示,然后由概率公式解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α-
π
2
)=
3
5
,則sin(π+α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1F2左右焦點,離心率為
1
2
,F(xiàn)1到點(2,1)距離
10

(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過F2斜率為k(k不等于0)直線l與C交于EF兩點,A為C右頂點,直線AE,AF交直線x=4于MN兩點,過F2作直線l′,l′⊥l,求證直線l′過MN的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A1B1C1的側(cè)棱長為2,底面邊長為1,M是BC的中點,在直線CC1上是否存在一點N,使得MN⊥AB1?若存在,求出它的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C1:y2=4x的準線與x軸交于點F1,焦點為F2,以F1、F2為焦點,離心率為
1
2
的橢圓記作C2
(1)求橢圓的標準方程;
(2)直線L經(jīng)過橢圓C2的右焦點F2,與拋物線C1交于A1、A2兩點,與橢圓C2交于B1、B2兩點,當(dāng)以B1B2為直徑的圓經(jīng)過F1時,求|A1A2|的長;
(3)若M是橢圓上的動點,以M為圓心,MF2為半徑作⊙N,使得⊙M與⊙N恒相切,若存在,求出⊙N的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=
-2x+1
2x+1
的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓C過點A(1,0),且與定直線l0:x=-1相切.
(1)求動圓圓心C的軌跡D方程;
(2)設(shè)圓心C的軌跡在x≤4的部分為曲線E,過點P(0,2)的直線l與曲線E交于A,B兩個不同的點,且
PA
PB
(λ>1),試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足
.
z-4
1z
|=0,則z的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系中,已知圓的方程為x2-8xcosθ+y2-6ysinθ+7cos2θ+8=0,在以直角坐標系的原點為極點,x軸正半軸為極軸的極坐標系中,有點A(2,0)
(Ⅰ)求圓心軌跡的普通方程C;
(Ⅱ)若點P在曲線C上,求|PA|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案