【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生平均每天課外體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

將學生日均課外體育鍛煉時間在的學生評價為“課外體育達標”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

課外體育不達標

課外體育達標

合計

20

110

合計

(2)通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?

參考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)根據(jù)所給數(shù)據(jù),可得列聯(lián)表;(2)根據(jù)關聯(lián)表,代入公式計算與臨界值比較即可得出結論.

試題解析:(1)

(2)

所以在犯錯誤的概率不超過的前提下不能判斷課外體育達標與性別有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的方程是,圓的參數(shù)方程是為參數(shù)),以原點為極點, 軸的非負半軸為極軸建立極坐標系.

(1)分別求直線與圓的極坐標方程;

(2)射線: )與圓的交點為, 兩點,與直線交于點,射線: 與圓交于, 兩點,與直線交于點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當,求函數(shù)處的切線方程;

(2)當求函數(shù)的單調(diào)區(qū)間;

(3)在(1)的條件下,證明:(其中為自然對數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.

(1)求橢圓E的方程;

(2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.

(3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M、N,若直線MNx軸、y軸上的截距分別為m、n,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知A、BC是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.

(1)求橢圓E的方程;

(2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.

(3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M、N,若直線MNx軸、y軸上的截距分別為m、n,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)在點處的切線方程為.

(Ⅰ)求實數(shù),的值;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,底面是邊長為3的正方形,平面,,,與平面所成的角為.

(1)求證:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術支援.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于厘米的玉米為高莖玉米,否則為矮莖玉米

(1)完成列聯(lián)表,并判斷是否可以在犯錯誤概率不超過的前提下,認為抗倒伏與玉米矮莖有關?

(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方式從抗倒伏的玉米中抽出株,再從這株玉米中選取株進行雜交實驗,選取的植株均為矮莖的概率是多少?

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面平面,.

(1)證明:;

(2)若是正三角形,,求二面角的大小.

查看答案和解析>>

同步練習冊答案